117,504 research outputs found

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Can You Hear Me Now? Good. The Nextwave of Options for the FCC, in Light of FCC v. Nextwave Personal Communications, Inc.

    Get PDF
    This Note examines the competing interests involved when a company has personal communications services (PCS) and spectrum licenses granted by the FCC and reorganizes under Chapter 11 of the Bankruptcy Code. Part II provides a framework of the FCC\u27s distribution of spectrum and PCS licenses, the relevant provisions of the Bankruptcy Code, an analysis of the FCC\u27s actions as both a regulator and creditor, and an overview of leading cases that have been decided in this area. Part III provides a statement of facts, including the procedural history and the Supreme Court\u27s decision in FCC v. NextWave Personal Communications, Inc. Finally, Part IV analyzes the impact of the Supreme Court\u27s decision, and how it will affect future regulatory action in the bankruptcy arena, along with proposed solutions to the difficulties facing the FCC

    Learning to Prevent Monocular SLAM Failure using Reinforcement Learning

    Full text link
    Monocular SLAM refers to using a single camera to estimate robot ego motion while building a map of the environment. While Monocular SLAM is a well studied problem, automating Monocular SLAM by integrating it with trajectory planning frameworks is particularly challenging. This paper presents a novel formulation based on Reinforcement Learning (RL) that generates fail safe trajectories wherein the SLAM generated outputs do not deviate largely from their true values. Quintessentially, the RL framework successfully learns the otherwise complex relation between perceptual inputs and motor actions and uses this knowledge to generate trajectories that do not cause failure of SLAM. We show systematically in simulations how the quality of the SLAM dramatically improves when trajectories are computed using RL. Our method scales effectively across Monocular SLAM frameworks in both simulation and in real world experiments with a mobile robot.Comment: Accepted at the 11th Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP) 2018 More info can be found at the project page at https://robotics.iiit.ac.in/people/vignesh.prasad/SLAMSafePlanner.html and the supplementary video can be found at https://www.youtube.com/watch?v=420QmM_Z8v

    DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments

    Full text link
    Simultaneous Localization and Mapping (SLAM) is considered to be a fundamental capability for intelligent mobile robots. Over the past decades, many impressed SLAM systems have been developed and achieved good performance under certain circumstances. However, some problems are still not well solved, for example, how to tackle the moving objects in the dynamic environments, how to make the robots truly understand the surroundings and accomplish advanced tasks. In this paper, a robust semantic visual SLAM towards dynamic environments named DS-SLAM is proposed. Five threads run in parallel in DS-SLAM: tracking, semantic segmentation, local mapping, loop closing, and dense semantic map creation. DS-SLAM combines semantic segmentation network with moving consistency check method to reduce the impact of dynamic objects, and thus the localization accuracy is highly improved in dynamic environments. Meanwhile, a dense semantic octo-tree map is produced, which could be employed for high-level tasks. We conduct experiments both on TUM RGB-D dataset and in the real-world environment. The results demonstrate the absolute trajectory accuracy in DS-SLAM can be improved by one order of magnitude compared with ORB-SLAM2. It is one of the state-of-the-art SLAM systems in high-dynamic environments. Now the code is available at our github: https://github.com/ivipsourcecode/DS-SLAMComment: 7 pages, accepted at the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018). Now the code is available at our github: https://github.com/ivipsourcecode/DS-SLA

    Keyframe-based monocular SLAM: design, survey, and future directions

    Get PDF
    Extensive research in the field of monocular SLAM for the past fifteen years has yielded workable systems that found their way into various applications in robotics and augmented reality. Although filter-based monocular SLAM systems were common at some time, the more efficient keyframe-based solutions are becoming the de facto methodology for building a monocular SLAM system. The objective of this paper is threefold: first, the paper serves as a guideline for people seeking to design their own monocular SLAM according to specific environmental constraints. Second, it presents a survey that covers the various keyframe-based monocular SLAM systems in the literature, detailing the components of their implementation, and critically assessing the specific strategies made in each proposed solution. Third, the paper provides insight into the direction of future research in this field, to address the major limitations still facing monocular SLAM; namely, in the issues of illumination changes, initialization, highly dynamic motion, poorly textured scenes, repetitive textures, map maintenance, and failure recovery
    • …
    corecore