6,205 research outputs found

    Characterization of Sirt2 using conditional RNAi in mice

    Get PDF
    Within the past eight years, RNA interference (RNAi) has emerged as a powerful experimental tool for gene function analysis in mice. Reversible control of shRNA mediated RNAi has been achieved by using a tetracycline (tet)-inducible promoter. In the presence of the inductor doxycycline (dox), shRNA mediated gene silencing is initiated, whereas RNAi mechanism is blocked in the absence of dox. To achieve spatially and temporally regulated RNAi, the tet inducible system was combined with a Cre/loxP based strategy for tissue specific activation of shRNA constructs. To this end, a loxP-flanked "promoter inhibitory element" (PIE) was placed between the proximal (PSE) and distal sequence element (DSE) of a dox inducible promoter such that promoter function is completely blocked. Re-activation can be achieved through Cre mediated excision of PIE. To allow for gene silencing in a selected tissue, Cre expression can be regulated by a tissue-specific promoter. In mouse ES cells, the system mediated tight regulation of shRNA expression upon Cre mediated activation and dox administration, reaching knockdown efficiencies of >80%. Unexpectedly, the system showed a limited activity in transgenic mice when applied for conditional silencing of two different targets, LacZ and Sirt2. Sirt2 is a member of the sirtuin family which has considerably gained attention in vitro for its possible role in many physiological processes, including adipogenesis and neurodegenerative diseases. To investigate the function of Sirt2 in vivo, the unmodified dox-responsive and tet-inducible promoter was further used for conditional RNAi in transgenic mice. Inducible shRNA expression resulted in efficient silencing of Sirt2 (>90%) in all tissues which have been analyzed. Suppression of Sirt2 during embryogenesis resulted in offspring consisting of equal ratios of wild type and transgenic pups, indicating that Sirt2 is not indispensable for development. In adult animals, glucose metabolism, insulin sensitivity and energy balance appeared to be unaffected by Sirt2 deficiency. Likewise, expression of PPARγ, a downstream target of Sirt2, was not found to be altered upon Sirt2 inhibition. Finally, Sirt2 silencing was induced in an experimental model of Parkinson disease (PD). Data from Rotarod performances to study motor behaviour did not provide any evidence for a role of Sirt2 in PD pathogenesis as suggested by previous in vitro studies. Taken together, conditional Sirt2 silencing in vivo does not support speculation concerning a central role of Sirt2 in physiological processes, embryogenesis and in a mouse model of Parkinson disease

    Sirtuin functions and modulation: from chemistry to the clinic

    Get PDF
    Sirtuins are NAD+ -dependent histone deacetylases regulating important metabolic pathways in prokaryotes and eukaryotes and are involved in many biological processes such as cell survival, senescence, proliferation, apoptosis, DNA repair, cell metabolism, and caloric restriction. The seven members of this family of enzymes are considered potential targets for the treatment of human pathologies including neurodegenerative diseases, cardiovascular diseases, and cancer. Furthermore, recent interest focusing on sirtuin modulators as epigenetic players in the regulation of fundamental biological pathways has prompted increased efforts to discover new small molecules able to modify sirtuin activity. Here, we review the role, mechanism of action, and biological function of the seven sirtuins, as well as their inhibitors and activators

    Identification of a novel polyprenylated acylphloroglucinol‑derived SIRT1 inhibitor with cancer‑specific anti-proliferative and invasion-suppressing activities

    Full text link
    SIRT1, a class III histone deacetylase, plays a critical role in regulating cancer cell growth, migration and invasion, which makes it a potential target for cancer therapeutics. In this study, we screened derivatives of several groups of natural products and identified a novel SIRT1 inhibitor JQ-101, a synthetic derivative of the polyprenylated acylphloroglucinol (PPAP) natural products, with an IC(50) for SIRT1 of 30 µM in vitro, with 5-fold higher activity for SIRT1 vs. SIRT2. Exposure of tumor cells to JQ-101 significantly enhanced acetylation of p53 and histone H4K16 at known sites of SIRT1 deacetylation, validating SIRT1 as its cellular target. JQ-101 suppressed cancer cell growth and survival by targeting SIRT1, and also exhibited selective cytotoxicity towards a panel of human tumor cell lines, while producing no toxicity in two normal human cell types at comparable concentrations. JQ-101 induced both apoptosis and cell senescence, and suppressed cancer cell invasion in vitro. In summary, we have identified JQ-101 as a new SIRT1 inhibitor which may have potential application in cancer treatment through its ability to induce tumor cell apoptosis and senescence and suppress cancer cell invasion.CA164245 - NCI NIH HHS; R01 CA101992 - NCI NIH HHS; R21 CA129046 - NCI NIH HHS; R21 CA141036 - NCI NIH HHS; P50 GM067041 - NIGMS NIH HHS; UL1RR025771 - NCRR NIH HHS; CA101992 - NCI NIH HHS; UL1 RR025771 - NCRR NIH HHS; GM-073855 - NIGMS NIH HHS; CA129046 - NCI NIH HHS; R21 CA164245 - NCI NIH HHS; GM-067041 - NIGMS NIH HHS; CA141036 - NCI NIH HHS; R01 GM073855 - NIGMS NIH HH

    Sirtuins 1–7 expression in human adipose-derived stem cells from subcutaneous and visceral fat depots: influence of obesity and hypoxia

    Get PDF
    The sirtuin family comprises seven NAD+-dependent deacetylases which control the overall health of organisms through the regulation of pleiotropic metabolic pathways. Sirtuins are important modulators of adipose tissue metabolism and their expression is higher in lean than obese subjects. At present, the role of sirtuins in adipose-derived stem cells has not been investigated yet. Therefore, in this study, we evaluated the expression of the complete panel of sirtuins in adipose-derived stem cells isolated from both subcutaneous and visceral fat of non-obese and obese subjects. We aimed at investigating the influence of obesity on sirtuins' levels, their role in obesity-associated inflammation, and the relationship with the peroxisome proliferator-activated receptor delta, which also plays functions in adipose tissue metabolism. The mRNA levels in the four types of adipose-derived stem cells were evaluated by quantitative polymerase chain reaction, in untreated cells and also after 8 h of hypoxia exposure. Correlations among sirtuins' expression and clinical and molecular parameters were also analyzed. We found that sirtuin1-6 exhibited significant higher mRNA expression in visceral adipose-derived stem cells compared to subcutaneous adipose-derived stem cells of non-obese subjects. Sirtuin1-6 levels were markedly reduced in visceral adipose-derived stem cells of obese patients. Sirtuins' expression in visceral adipose-derived stem cells correlated negatively with body mass index and C-reactive protein and positively with peroxisome proliferator-activated receptor delta. Finally, only in the visceral adipose-derived stem cells of obese patients hypoxia-induced mRNA expression of all of the sirtuins. Our results highlight that sirtuins' levels in adipose-derived stem cells are consistent with protective effects against visceral obesity and inflammation, and suggest a transcriptional mechanism through which acute hypoxia up-regulates sirtuins in the visceral adipose-derived stem cells of obese patients

    Is acetylation a metabolic rheostat that regulates skeletal muscle insulin action?

    Get PDF
    Skeletal muscle insulin resistance, which increases the risk for developing various metabolic diseases, including type 2 diabetes, is a common metabolic disorder in obesity and aging. If potential treatments are to be developed to treat insulin resistance, then it is important to fully understand insulin signaling and glucose metabolism. While recent large-scale "omics" studies have revealed the acetylome to be comparable in size to the phosphorylome, the acetylation of insulin signaling proteins and its functional relevance to insulin-stimulated glucose transport and glucose metabolism is not fully understood. In this Mini Review we discuss the acetylation status of proteins involved in the insulin signaling pathway and review their potential effect on, and relevance to, insulin action in skeletal muscle

    Effects of Flight on Gene Expression and Aging in the Honey Bee Brain and Flight Muscle

    Get PDF
    Honey bees move through a series of in-hive tasks (e.g., “nursing”) to outside tasks (e.g., “foraging”) that are coincident with physiological changes and higher levels of metabolic activity. Social context can cause worker bees to speed up or slow down this process, and foragers may revert back to their earlier in-hive tasks accompanied by reversion to earlier physiological states. To investigate the effects of flight, behavioral state and age on gene expression, we used whole-genome microarrays and real-time PCR. Brain tissue and flight muscle exhibited different patterns of expression during behavioral transitions, with expression patterns in the brain reflecting both age and behavior, and expression patterns in flight muscle being primarily determined by age. Our data suggest that the transition from behaviors requiring little to no flight (nursing) to those requiring prolonged flight bouts (foraging), rather than the amount of previous flight per se, has a major effect on gene expression. Following behavioral reversion there was a partial reversion in gene expression but some aspects of forager expression patterns, such as those for genes involved in immune function, remained. Combined with our real-time PCR data, these data suggest an epigenetic control and energy balance role in honey bee functional senescence

    A small molecule ApoE4-targeted therapeutic candidate that normalizes sirtuin 1 levels and improves cognition in an Alzheimer's disease mouse model.

    Get PDF
    We describe here the results from the testing of a small molecule first-in-class apolipoprotein E4 (ApoE4)-targeted sirtuin1 (SirT1) enhancer, A03, that increases the levels of the neuroprotective enzyme SirT1 while not affecting levels of neurotoxic sirtuin 2 (SirT2) in vitro in ApoE4-transfected cells. A03 was identified by high-throughput screening (HTS) and found to be orally bioavailable and brain penetrant. In vivo, A03 treatment increased SirT1 levels in the hippocampus of 5XFAD-ApoE4 (E4FAD) Alzheimer's disease (AD) model mice and elicited cognitive improvement while inducing no observed toxicity. We were able to resolve the enantiomers of A03 and show using in vitro models that the L-enantiomer was more potent than the corresponding D-enantiomer in increasing SirT1 levels. ApoE4 expression has been shown to decrease the level of the NAD-dependent deacetylase and major longevity determinant SirT1 in brain tissue and serum of AD patients as compared to normal controls. A deficiency in SirT1 level has been recently implicated in increased tau acetylation, a dominant post-translational modification and key pathological event in AD and tauopathies. Therefore, as a novel approach to therapeutic development for AD, we targeted identification of compounds that enhance and normalize brain SirT1 levels

    Selective Sirt2 inhibition by ligand-induced rearrangement of the active site.

    Get PDF
    Sirtuins are a highly conserved class of NAD(+)-dependent lysine deacylases. The human isotype Sirt2 has been implicated in the pathogenesis of cancer, inflammation and neurodegeneration, which makes the modulation of Sirt2 activity a promising strategy for pharmaceutical intervention. A rational basis for the development of optimized Sirt2 inhibitors is lacking so far. Here we present high-resolution structures of human Sirt2 in complex with highly selective drug-like inhibitors that show a unique inhibitory mechanism. Potency and the unprecedented Sirt2 selectivity are based on a ligand-induced structural rearrangement of the active site unveiling a yet-unexploited binding pocket. Application of the most potent Sirtuin-rearranging ligand, termed SirReal2, leads to tubulin hyperacetylation in HeLa cells and induces destabilization of the checkpoint protein BubR1, consistent with Sirt2 inhibition in vivo. Our structural insights into this unique mechanism of selective sirtuin inhibition provide the basis for further inhibitor development and selective tools for sirtuin biology

    Sirtuins, bioageing, and cancer

    Get PDF
    The Sirtuins are a family of orthologues of yeast Sir2 found in a wide range of organisms from bacteria to man. They display a high degree of conservation between species, in both sequence and function, indicative of their key biochemical roles. Sirtuins are heavily implicated in cell cycle, cell division, transcription regulation, and metabolism, which places the various family members at critical junctures in cellular metabolism. Typically, Sirtuins have been implicated in the preservation of genomic stability and in the prolongation of lifespan though many of their target interactions remain unknown. Sirtuins play key roles in tumourigenesis, as some have tumour-suppressor functions and others influence tumours through their control of the metabolic state of the cell. Their links to ageing have also highlighted involvement in various age-related and degenerative diseases. Here, we discuss the current understanding of the role of Sirtuins in age-related diseases while taking a closer look at their roles and functions in maintaining genomic stability and their influence on telomerase and telomere function

    Modulation of microtubule acetylation by the interplay of TPPP/p25, SIRT2 and new anticancer agents with anti-SIRT2 potency

    Get PDF
    Abstract The microtubule network exerts multifarious functions controlled by its decoration with various proteins and post-translational modifications. The disordered microtubule associated Tubulin Polymerization Promoting Protein (TPPP/p25) and the NAD+-dependent tubulin deacetylase sirtuin-2 (SIRT2) play key roles in oligodendrocyte differentiation by acting as dominant factors in the organization of myelin proteome. Herein, we show that SIRT2 impedes the TPPP/p25-promoted microtubule assembly independently of NAD+; however, the TPPP/p25-assembled tubulin ultrastructures were resistant against SIRT2 activity. TPPP/p25 counteracts the SIRT2-derived tubulin deacetylation producing enhanced microtubule acetylation. The inhibition of the SIRT2 deacetylase activity by TPPP/p25 is evolved by the assembly of these tubulin binding proteins into a ternary complex, the concentration-dependent formation of which was quantified by experimental-based mathematical modelling. Co-localization of the SIRT2-TPPP/p25 complex on the microtubule network was visualized in HeLa cells by immunofluorescence microscopy using Bimolecular Fluorescence Complementation. We also revealed that a new potent SIRT2 inhibitor (MZ242) and its proteolysis targeting chimera (SH1) acting together with TPPP/p25 provoke microtubule hyperacetylation, which is coupled with process elongation only in the case of the degrader SH1. Both the structural and the functional effects manifesting themselves by this deacetylase proteome could lead to the fine-tuning of the regulation of microtubule dynamics and stability
    corecore