243,532 research outputs found

    The Origin of the Silicate Emission Features in the Seyfert 2 Galaxy, NGC 2110

    Full text link
    The unified model of active galactic nuclei (AGN) predicts silicate emission features at 10 and 18 microns in type 1 AGN, and such features have now been observed in objects ranging from distant QSOs to nearby LINERs. More surprising, however, is the detection of silicate emission in a few type 2 AGN. By combining Gemini and Spitzer mid-infrared imaging and spectroscopy of NGC 2110, the closest known Seyfert 2 galaxy with silicate emission features, we can constrain the location of the silicate emitting region to within 32 pc of the nucleus. This is the strongest constraint yet on the size of the silicate emitting region in a Seyfert galaxy of any type. While this result is consistent with a narrow line region origin for the emission, comparison with clumpy torus models demonstrates that emission from an edge-on torus can also explain the silicate emission features and 2-20 micron spectral energy distribution of this object. In many of the best-fitting models the torus has only a small number of clouds along the line of sight, and does not extend far above the equatorial plane. Extended silicate-emitting regions may well be present in AGN, but this work establishes that emission from the torus itself is also a viable option for the origin of silicate emission features in active galaxies of both type 1 and type 2.Comment: ApJL, accepte

    The distribution of silicate strength in Spitzer spectra of AGNs and ULIRGs

    Get PDF
    A sample of 196 AGNs and ULIRGs observed by the Infrared Spectrograph (IRS) on Spitzer is analyzed to study the distribution of the strength of the 9.7 micron silicate feature. Average spectra are derived for quasars, Seyfert 1 and Seyfert 2 AGNs, and ULIRGs. We find that quasars are characterized by silicate features in emission and Seyfert 1s equally by emission or weak absorption. Seyfert 2s are dominated by weak silicate absorption, and ULIRGs are characterized by strong silicate absorption (mean apparent optical depth about 1.5). Luminosity distributions show that luminosities at rest frame 5.5 micron are similar for the most luminous quasars and ULIRGs and are almost 10^5 times more luminous than the least luminous AGN in the sample. The distributions of spectral characteristics and luminosities are compared to those of optically faint infrared sources at z~2 being discovered by the IRS, which are also characterized by strong silicate absorption. It is found that local ULIRGs are a similar population, although they have lower luminosities and somewhat stronger absorption compared to the high redshift sources.Comment: Accepted for publication on ApJ

    A Tale of Three Galaxies: Deciphering the Infrared Emission of the Spectroscopically Anomalous Galaxies IRAS F10398+1455, IRAS F21013-0739 and SDSS J0808+3948

    Full text link
    The \textit{Spitzer}/Infrared Spectrograph spectra of three spectroscopically anomalous galaxies (IRAS~F10398+1455, IRAS~F21013-0739 and SDSS~J0808+3948) are modeled in terms of a mixture of warm and cold silicate dust, and warm and cold carbon dust. Their unique infrared (IR) emission spectra are characterized by a steep \simali5--8\mum emission continuum, strong emission bands from polycyclic aromatic hydrocarbon (PAH) molecules, and prominent silicate emission. The steep \simali5--8\mum emission continuum and strong PAH emission features suggest the dominance of starbursts, while the silicate emission is indicative of significant heating from active galactic nuclei (AGNs). With warm and cold silicate dust of various compositions ("astronomical silicate," amorphous olivine, or amorphous pyroxene) combined with warm and cold carbon dust (amorphous carbon, or graphite), we are able to closely reproduce the observed IR emission of these %spectroscopically anomalous galaxies. We find that the dust temperature is the primary cause in regulating the steep \sim5--8\mum continuum and silicate emission, insensitive to the exact silicate or carbon dust mineralogy and grain size aa as long as a\simlt1\mum. More specifically, the temperature of the \simali5--8\mum continuum emitter (which is essentially carbon dust) of these galaxies is \sim250--400\K, much lower than that of typical quasars which is \sim640\K. Moreover, it appears that larger dust grains are preferred in quasars. The lower dust temperature and smaller grain sizes inferred for these three galaxies compared with that of quasars could be due to the fact that they may harbor a young/weak AGN which is not maturely developed yet.Comment: 31 pages, 14 figures, accepted for publication in Ap

    The silicate absorption profile in the ISM towards the heavily obscured nucleus of NGC 4418

    Get PDF
    The 9.7-micron silicate absorption profile in the interstellar medium provides important information on the physical and chemical composition of interstellar dust grains. Measurements in the Milky Way have shown that the profile in the diffuse interstellar medium is very similar to the amorphous silicate profiles found in circumstellar dust shells around late M stars, and narrower than the silicate profile in denser star-forming regions. Here, we investigate the silicate absorption profile towards the very heavily obscured nucleus of NGC 4418, the galaxy with the deepest known silicate absorption feature, and compare it to the profiles seen in the Milky Way. Comparison between the 8-13 micron spectrum obtained with TReCS on Gemini and the larger aperture spectrum obtained from the Spitzer archive indicates that the former isolates the nuclear emission, while Spitzer detects low surface brightness circumnuclear diffuse emission in addition. The silicate absorption profile towards the nucleus is very similar to that in the diffuse ISM in the Milky Way with no evidence of spectral structure from crystalline silicates or silicon carbide grains.Comment: 7 Pages, 3 figures. MNRAS in pres

    Fracture Toughness of Silicate Glasses: Insights from Molecular Dynamics Simulations

    Full text link
    Understanding, predicting and eventually improving the resistance to fracture of silicate materials is of primary importance to design new glasses that would be tougher, while retaining their transparency. However, the atomic mechanism of the fracture in amorphous silicate materials is still a topic of debate. In particular, there is some controversy about the existence of ductility at the nano-scale during the crack propagation. Here, we present simulations of the fracture of three archetypical silicate glasses using molecular dynamics. We show that the methodology that is used provide realistic values of fracture energy and toughness. In addition, the simulations clearly suggest that silicate glasses can show different degrees of ductility, depending on their composition.Comment: arXiv admin note: text overlap with arXiv:1410.291

    Structure, bonding and morphology of hydrothermally synthesised xonotlite

    No full text
    The authors have systematically investigated the role of synthesis conditions upon the structure and morphology of xonotlite. Starting with a mechanochemically prepared, semicrystalline phase with Ca/Si=1, the authors have prepared a series of xonotlite samples hydrothermally, at temperatures between 200 and 250 degrees C. Analysis in each case was by X-ray photoelectron spectroscopy, environmental scanning electron microscopy and X-ray diffraction. The authors’ use of a much lower water/solid ratio has indirectly confirmed the ‘through solution’ mechanism of xonotlite formation, where silicate dissolution is a key precursor of xonotlite formation. Concerning the role of temperature, too low a temperature (~200 degrees C) fails to yield xonotlite or leads to increased number of structural defects in the silicate chains of xonotlite and too high a temperature (>250 degrees C) leads to degradation of the xonotlite structure, through leaching of interchain calcium. Synthesis duration meanwhile leads to increased silicate polymerisation due to diminishing of the defects in the silicate chains and more perfect crystal morphologies

    9.7 um Silicate Features in AGNs: New Insights into Unification Models

    Full text link
    We describe observations of 9.7 um silicate features in 97 AGNs, exhibiting a wide range of AGN types and of X-ray extinction toward the central nuclei. We find that the strength of the silicate feature correlates with the HI column density estimated from fitting the X-ray data, such that low HI columns correspond to silicate emission while high columns correspond to silicate absorption. The behavior is generally consistent with unification models where the large diversity in AGN properties is caused by viewing-angle-dependent obscuration of the nucleus. Radio-loud AGNs and radio-quiet quasars follow roughly the correlation between HI columns and the strength of the silicate feature defined by Seyfert galaxies. The agreement among AGN types suggests a high-level unification with similar characteristics for the structure of the obscuring material. We demonstrate the implications for unification models qualitatively with a conceptual disk model. The model includes an inner accretion disk (< 0.1 pc in radius), a middle disk (0.1-10 pc in radius) with a dense diffuse component and with embedded denser clouds, and an outer clumpy disk (10-300 pc in radius).Comment: Accepted for publication in ApJ, 14 pages, 5 figures. The on-line table is available at http://cztsy.as.arizona.edu/~yong/silicate_tab1.pd
    corecore