80 research outputs found

    Fake news identification on Twitter with hybrid CNN and RNN models

    Get PDF
    The problem associated with the propagation of fake news continues to grow at an alarming scale. This trend has generated much interest from politics to academia and industry alike. We propose a framework that detects and classifies fake news messages from Twitter posts using hybrid of convolutional neural networks and long-short term recurrent neural network models. The proposed work using this deep learning approach achieves 82% accuracy. Our approach intuitively identifies relevant features associated with fake news stories without previous knowledge of the domain

    Scholarly event characteristics in four fields of science : a metrics-based analysis

    Get PDF
    One of the key channels of scholarly knowledge exchange are scholarly events such as conferences, workshops, symposiums, etc.; such events are especially important and popular in Computer Science, Engineering, and Natural Sciences.However, scholars encounter problems in finding relevant information about upcoming events and statistics on their historic evolution.In order to obtain a better understanding of scholarly event characteristics in four fields of science, we analyzed the metadata of scholarly events of four major fields of science, namely Computer Science, Physics, Engineering, and Mathematics using Scholarly Events Quality Assessment suite, a suite of ten metrics.In particular, we analyzed renowned scholarly events belonging to five sub-fields within Computer Science, namely World Wide Web, Computer Vision, Software Engineering, Data Management, as well as Security and Privacy.This analysis is based on a systematic approach using descriptive statistics as well as exploratory data analysis. The findings are on the one hand interesting to observe the general evolution and success factors of scholarly events; on the other hand, they allow (prospective) event organizers, publishers, and committee members to assess the progress of their event over time and compare it to other events in the same field; and finally, they help researchers to make more informed decisions when selecting suitable venues for presenting their work.Based on these findings, a set of recommendations has been concluded to different stakeholders, involving event organizers, potential authors, proceedings publishers, and sponsors. Our comprehensive dataset of scholarly events of the aforementioned fields is openly available in a semantic format and maintained collaboratively at OpenResearch.org. © 2020, The Author(s)

    Neural Architecture for Question Answering Using a Knowledge Graph and Web Corpus

    Full text link
    In Web search, entity-seeking queries often trigger a special Question Answering (QA) system. It may use a parser to interpret the question to a structured query, execute that on a knowledge graph (KG), and return direct entity responses. QA systems based on precise parsing tend to be brittle: minor syntax variations may dramatically change the response. Moreover, KG coverage is patchy. At the other extreme, a large corpus may provide broader coverage, but in an unstructured, unreliable form. We present AQQUCN, a QA system that gracefully combines KG and corpus evidence. AQQUCN accepts a broad spectrum of query syntax, between well-formed questions to short `telegraphic' keyword sequences. In the face of inherent query ambiguities, AQQUCN aggregates signals from KGs and large corpora to directly rank KG entities, rather than commit to one semantic interpretation of the query. AQQUCN models the ideal interpretation as an unobservable or latent variable. Interpretations and candidate entity responses are scored as pairs, by combining signals from multiple convolutional networks that operate collectively on the query, KG and corpus. On four public query workloads, amounting to over 8,000 queries with diverse query syntax, we see 5--16% absolute improvement in mean average precision (MAP), compared to the entity ranking performance of recent systems. Our system is also competitive at entity set retrieval, almost doubling F1 scores for challenging short queries.Comment: Accepted to Information Retrieval Journa

    Perils and Challenges of Social Media and Election Manipulation Analysis: The 2018 US Midterms

    Get PDF
    One of the hallmarks of a free and fair society is the ability to conduct a peaceful and seamless transfer of power from one leader to another. Democratically, this is measured in a citizen population's trust in the electoral system of choosing a representative government. In view of the well documented issues of the 2016 US Presidential election, we conducted an in-depth analysis of the 2018 US Midterm elections looking specifically for voter fraud or suppression. The Midterm election occurs in the middle of a 4 year presidential term. For the 2018 midterms, 35 senators and all the 435 seats in the House of Representatives were up for re-election, thus, every congressional district and practically every state had a federal election. In order to collect election related tweets, we analyzed Twitter during the month prior to, and the two weeks following, the November 6, 2018 election day. In a targeted analysis to detect statistical anomalies or election interference, we identified several biases that can lead to wrong conclusions. Specifically, we looked for divergence between actual voting outcomes and instances of the #ivoted hashtag on the election day. This analysis highlighted three states of concern: New York, California, and Texas. We repeated our analysis discarding malicious accounts, such as social bots. Upon further inspection and against a backdrop of collected general election-related tweets, we identified some confounding factors, such as population bias, or bot and political ideology inference, that can lead to false conclusions. We conclude by providing an in-depth discussion of the perils and challenges of using social media data to explore questions about election manipulation
    • …
    corecore