439,359 research outputs found
High intermodulation gain in a micromechanical Duffing resonator
In this work we use a micromechanical resonator to experimentally study small
signal amplification near the onset of Duffing bistability. The device consists
of a PdAu beam serving as a micromechanical resonator excited by an adjacent
gate electrode. A large pump signal drives the resonator near the onset of
bistability, enabling amplification of small signals in a narrow bandwidth. To
first order, the amplification is inversely proportional to the frequency
difference between the pump and signal. We estimate the gain to be about 15dB
for our device
Non-resonant wave front reversal of spin waves used for microwave signal processing
It is demonstrated that non-resonant wave front reversal (WFR) of spin-wave
pulses caused by pulsed parametric pumping can be effectively used for
microwave signal processing. When the frequency band of signal amplification by
pumping is narrower than the spectral width of the signal, the non-resonant WFR
can be used for the analysis of the signal spectrum. In the opposite case the
non-resonant WFR can be used for active (with amplification) filtering of the
input signal.Comment: 4 pages, 3 figure
Signal amplification in a qubit-resonator system
We study the dynamics of a qubit-resonator system, when the resonator is
driven by two signals. The interaction of the qubit with the high-amplitude
driving we consider in terms of the qubit dressed states. Interaction of the
dressed qubit with the second probing signal can essentially change the
amplitude of this signal. We calculate the transmission amplitude of the probe
signal through the resonator as a function of the qubit's energy and the
driving frequency detuning. The regions of increase and attenuation of the
transmitted signal are calculated and demonstrated graphically. We present the
influence of the signal parameters on the value of the amplification, and
discuss the values of the qubit-resonator system parameters for an optimal
amplification and attenuation of the weak probe signal.Comment: 7 pages, 8 figure
Eight-fold signal amplification of a superconducting nanowire single-photon detector using a multiple-avalanche architecture
Superconducting nanowire avalanche single-photon detectors (SNAPs) with n
parallel nanowires are advantageous over single-nanowire detectors because
their output signal amplitude scales linearly with n. However, the SNAP
architecture has not been viably demonstrated for n > 4. To increase n for
larger signal amplification, we designed a multi-stage, successive-avalanche
architecture which used nanowires, connected via choke inductors in a
binary-tree layout. We demonstrated an avalanche detector with n = 8 parallel
nanowires and achieved eight-fold signal amplification, with a timing jitter of
54 ps.Comment: 7 pages, 3 figure
Optimal length and signal amplification in weakly activated signal transduction cascades
Weakly activated signaling cascades can be modeled as linear systems. The
input-to-output transfer function and the internal gain of a linear system,
provide natural measures for the propagation of the input signal down the
cascade and for the characterization of the final outcome. The most efficient
design of a cascade for generating sharp signals, is obtained by choosing all
the off rates equal, and a ``universal'' finite optimal length.Comment: 27 pages, 10 figures, LaTeX fil
Precision spectroscopy by photon-recoil signal amplification
Precision spectroscopy of atomic and molecular ions offers a window to new
physics, but is typically limited to species with a cycling transition for
laser cooling and detection. Quantum logic spectroscopy has overcome this
limitation for species with long-lived excited states. Here, we extend quantum
logic spectroscopy to fast, dipole-allowed transitions and apply it to perform
an absolute frequency measurement. We detect the absorption of photons by the
spectroscopically investigated ion through the photon recoil imparted on a
co-trapped ion of a different species, on which we can perform efficient
quantum logic detection techniques. This amplifies the recoil signal from a few
absorbed photons to thousands of fluorescence photons. We resolve the line
center of a dipole-allowed transition in 40Ca+ to 1/300 of its observed
linewidth, rendering this measurement one of the most accurate of a broad
transition. The simplicity and versatility of this approach enables
spectroscopy of many previously inaccessible species.Comment: 25 pages, 6 figures, 1 table, updated supplementary information,
fixed typo
Enzyme localization can drastically affect signal amplification in signal transduction pathways
Push-pull networks are ubiquitous in signal transduction pathways in both
prokaryotic and eukaryotic cells. They allow cells to strongly amplify signals
via the mechanism of zero-order ultrasensitivity. In a push-pull network, two
antagonistic enzymes control the activity of a protein by covalent
modification. These enzymes are often uniformly distributed in the cytoplasm.
They can, however, also be colocalized in space, for instance, near the pole of
the cell. Moreover, it is increasingly recognized that these enzymes can also
be spatially separated, leading to gradients of the active form of the
messenger protein. Here, we investigate the consequences of the spatial
distributions of the enzymes for the amplification properties of push-pull
networks. Our calculations reveal that enzyme localization by itself can have a
dramatic effect on the gain. The gain is maximized when the two enzymes are
either uniformly distributed or colocalized in one region in the cell.
Depending on the diffusion constants, however, the sharpness of the response
can be strongly reduced when the enzymes are spatially separated. We discuss
how our predictions could be tested experimentally.Comment: PLoS Comp Biol, in press. 32 pages including 6 figures and supporting
informatio
- …
