3 research outputs found

    Enhanced convnet based Latent Finger Print Recognition

    Get PDF
    Latent finger print recognition plays an important role in forensic, criminal cases etc. The latent images will not be recognised easily since they are impartial images, which find difficult to match with the registered database. Due to noisy images, it is very difficult for recognition. Autoencoder plays an important role in pre-processing the latent image. ConvNetbased method is an efficient approach used for latent image recognition. For each minutiae extraction, ConvNet descriptor is performed. Both minutiae and texture matcher is considered for comparison. This technique is compared with existing methods which shows, that the proposed method provides a higher accuracy than the existing methods like CNN, skeleton approach nonlinear mapping and product quantization. The proposed method provides an accuracy of 76.4%, 80.4% and 86.4% for rank1,5 and 10 respectively

    Performance Analysis of Low-Cost Tracking System for Mobile Robots

    Get PDF
    This paper proposes a reliable and straightforward approach to mobile robots (or moving objects in general) indoor tracking, in order to perform a preliminary study on their dynamics. The main features of this approach are its minimal and low-cost setup and a user-friendly interpretation of the data generated by the ArUco library. By using a commonly available camera, such as a smartphone one or a webcam, and at least one marker for each object that has to be tracked, it is possible to estimate the pose of these markers, with respect to a reference conveniently placed in the environment, in order to produce results that are easily interpretable by a user. This paper presents a simple extension to the ArUco library to generate such user-friendly data, and it provides a performance analysis of this application with static and moving objects, using a smartphone camera to highlight the most notable feature of this solution, but also its limitations

    3D Recording and Interpretation for Maritime Archaeology

    Get PDF
    This open access peer-reviewed volume was inspired by the UNESCO UNITWIN Network for Underwater Archaeology International Workshop held at Flinders University, Adelaide, Australia in November 2016. Content is based on, but not limited to, the work presented at the workshop which was dedicated to 3D recording and interpretation for maritime archaeology. The volume consists of contributions from leading international experts as well as up-and-coming early career researchers from around the globe. The content of the book includes recording and analysis of maritime archaeology through emerging technologies, including both practical and theoretical contributions. Topics include photogrammetric recording, laser scanning, marine geophysical 3D survey techniques, virtual reality, 3D modelling and reconstruction, data integration and Geographic Information Systems. The principal incentive for this publication is the ongoing rapid shift in the methodologies of maritime archaeology within recent years and a marked increase in the use of 3D and digital approaches. This convergence of digital technologies such as underwater photography and photogrammetry, 3D sonar, 3D virtual reality, and 3D printing has highlighted a pressing need for these new methodologies to be considered together, both in terms of defining the state-of-the-art and for consideration of future directions. As a scholarly publication, the audience for the book includes students and researchers, as well as professionals working in various aspects of archaeology, heritage management, education, museums, and public policy. It will be of special interest to those working in the field of coastal cultural resource management and underwater archaeology but will also be of broader interest to anyone interested in archaeology and to those in other disciplines who are now engaging with 3D recording and visualization
    corecore