59,894 research outputs found

    A Meshfree Generalized Finite Difference Method for Surface PDEs

    Full text link
    In this paper, we propose a novel meshfree Generalized Finite Difference Method (GFDM) approach to discretize PDEs defined on manifolds. Derivative approximations for the same are done directly on the tangent space, in a manner that mimics the procedure followed in volume-based meshfree GFDMs. As a result, the proposed method not only does not require a mesh, it also does not require an explicit reconstruction of the manifold. In contrast to existing methods, it avoids the complexities of dealing with a manifold metric, while also avoiding the need to solve a PDE in the embedding space. A major advantage of this method is that all developments in usual volume-based numerical methods can be directly ported over to surfaces using this framework. We propose discretizations of the surface gradient operator, the surface Laplacian and surface Diffusion operators. Possibilities to deal with anisotropic and discontinous surface properties (with large jumps) are also introduced, and a few practical applications are presented

    A linear domain decomposition method for partially saturated flow in porous media

    Get PDF
    The Richards equation is a nonlinear parabolic equation that is commonly used for modelling saturated/unsaturated flow in porous media. We assume that the medium occupies a bounded Lipschitz domain partitioned into two disjoint subdomains separated by a fixed interface Γ\Gamma. This leads to two problems defined on the subdomains which are coupled through conditions expressing flux and pressure continuity at Γ\Gamma. After an Euler implicit discretisation of the resulting nonlinear subproblems a linear iterative (LL-type) domain decomposition scheme is proposed. The convergence of the scheme is proved rigorously. In the last part we present numerical results that are in line with the theoretical finding, in particular the unconditional convergence of the scheme. We further compare the scheme to other approaches not making use of a domain decomposition. Namely, we compare to a Newton and a Picard scheme. We show that the proposed scheme is more stable than the Newton scheme while remaining comparable in computational time, even if no parallelisation is being adopted. Finally we present a parametric study that can be used to optimize the proposed scheme.Comment: 34 pages, 13 figures, 7 table
    • …
    corecore