62,474 research outputs found

    On Adaptive Eulerian-Lagrangian Method for Linear Convection-Diffusion Problems

    Full text link
    In this paper, we consider the adaptive Eulerian--Lagrangian method (ELM) for linear convection-diffusion problems. Unlike the classical a posteriori error estimations, we estimate the temporal error along the characteristics and derive a new a posteriori error bound for ELM semi-discretization. With the help of this proposed error bound, we are able to show the optimal convergence rate of ELM for solutions with minimal regularity. Furthermore, by combining this error bound with a standard residual-type estimator for the spatial error, we obtain a posteriori error estimators for a fully discrete scheme. We present numerical tests to demonstrate the efficiency and robustness of our adaptive algorithm.Comment: 30 page

    A Multiscale Method for Model Order Reduction in PDE Parameter Estimation

    Full text link
    Estimating parameters of Partial Differential Equations (PDEs) is of interest in a number of applications such as geophysical and medical imaging. Parameter estimation is commonly phrased as a PDE-constrained optimization problem that can be solved iteratively using gradient-based optimization. A computational bottleneck in such approaches is that the underlying PDEs needs to be solved numerous times before the model is reconstructed with sufficient accuracy. One way to reduce this computational burden is by using Model Order Reduction (MOR) techniques such as the Multiscale Finite Volume Method (MSFV). In this paper, we apply MSFV for solving high-dimensional parameter estimation problems. Given a finite volume discretization of the PDE on a fine mesh, the MSFV method reduces the problem size by computing a parameter-dependent projection onto a nested coarse mesh. A novelty in our work is the integration of MSFV into a PDE-constrained optimization framework, which updates the reduced space in each iteration. We also present a computationally tractable way of differentiating the MOR solution that acknowledges the change of basis. As we demonstrate in our numerical experiments, our method leads to computational savings particularly for large-scale parameter estimation problems and can benefit from parallelization.Comment: 22 pages, 4 figures, 3 table

    A Lagrangian Gauss-Newton-Krylov Solver for Mass- and Intensity-Preserving Diffeomorphic Image Registration

    Full text link
    We present an efficient solver for diffeomorphic image registration problems in the framework of Large Deformations Diffeomorphic Metric Mappings (LDDMM). We use an optimal control formulation, in which the velocity field of a hyperbolic PDE needs to be found such that the distance between the final state of the system (the transformed/transported template image) and the observation (the reference image) is minimized. Our solver supports both stationary and non-stationary (i.e., transient or time-dependent) velocity fields. As transformation models, we consider both the transport equation (assuming intensities are preserved during the deformation) and the continuity equation (assuming mass-preservation). We consider the reduced form of the optimal control problem and solve the resulting unconstrained optimization problem using a discretize-then-optimize approach. A key contribution is the elimination of the PDE constraint using a Lagrangian hyperbolic PDE solver. Lagrangian methods rely on the concept of characteristic curves that we approximate here using a fourth-order Runge-Kutta method. We also present an efficient algorithm for computing the derivatives of final state of the system with respect to the velocity field. This allows us to use fast Gauss-Newton based methods. We present quickly converging iterative linear solvers using spectral preconditioners that render the overall optimization efficient and scalable. Our method is embedded into the image registration framework FAIR and, thus, supports the most commonly used similarity measures and regularization functionals. We demonstrate the potential of our new approach using several synthetic and real world test problems with up to 14.7 million degrees of freedom.Comment: code available at: https://github.com/C4IR/FAIR.m/tree/master/add-ons/LagLDDM

    A discrete Liouville identity for numerical reconstruction of Schr\"odinger potentials

    Full text link
    We propose a discrete approach for solving an inverse problem for Schr\"odinger's equation in two dimensions, where the unknown potential is to be determined from boundary measurements of the Dirichlet to Neumann map. For absorptive potentials, and in the continuum, it is known that by using the Liouville identity we obtain an inverse conductivity problem. Its discrete analogue is to find a resistor network that matches the measurements, and is well understood. Here we show how to use a discrete Liouville identity to transform its solution to that of Schr\"odinger's problem. The discrete Schr\"odinger potential given by the discrete Liouville identity can be used to reconstruct the potential in the continuum in two ways. First, we can obtain a direct but coarse reconstruction by interpreting the values of the discrete Schr\"odinger potential as averages of the continuum Schr\"odinger potential on a special sensitivity grid. Second, the discrete Schr\"odinger potential may be used to reformulate the conventional nonlinear output least squares optimization formulation of the inverse Schr\"odinger problem. Instead of minimizing the boundary measurement misfit, we minimize the misfit between the discrete Schr\"odinger potentials. This results in a better behaved optimization problem that converges in a single Gauss-Newton iteration, and gives good quality reconstructions of the potential, as illustrated by the numerical results.Comment: 20 pages, 8 figure

    A Unified Study of Continuous and Discontinuous Galerkin Methods

    Full text link
    A unified study is presented in this paper for the design and analysis of different finite element methods (FEMs), including conforming and nonconforming FEMs, mixed FEMs, hybrid FEMs,discontinuous Galerkin (DG) methods, hybrid discontinuous Galerkin (HDG) methods and weak Galerkin (WG) methods. Both HDG and WG are shown to admit inf-sup conditions that hold uniformly with respect to both mesh and penalization parameters. In addition, by taking the limit of the stabilization parameters, a WG method is shown to converge to a mixed method whereas an HDG method is shown to converge to a primal method. Furthermore, a special class of DG methods, known as the mixed DG methods, is presented to fill a gap revealed in the unified framework.Comment: 39 page

    Spectral semi-implicit and space-time discontinuous Galerkin methods for the incompressible Navier-Stokes equations on staggered Cartesian grids

    Full text link
    In this paper two new families of arbitrary high order accurate spectral DG finite element methods are derived on staggered Cartesian grids for the solution of the inc.NS equations in two and three space dimensions. Pressure and velocity are expressed in the form of piecewise polynomials along different meshes. While the pressure is defined on the control volumes of the main grid, the velocity components are defined on a spatially staggered mesh. In the first family, h.o. of accuracy is achieved only in space, while a simple semi-implicit time discretization is derived for the pressure gradient in the momentum equation. The resulting linear system for the pressure is symmetric and positive definite and either block 5-diagonal (2D) or block 7-diagonal (3D) and can be solved very efficiently by means of a classical matrix-free conjugate gradient method. The use of a preconditioner was not necessary. This is a rather unique feature among existing implicit DG schemes for the NS equations. In order to avoid a stability restriction due to the viscous terms, the latter are discretized implicitly. The second family of staggered DG schemes achieves h.o. of accuracy also in time by expressing the numerical solution in terms of piecewise space-time polynomials. In order to circumvent the low order of accuracy of the adopted fractional stepping, a simple iterative Picard procedure is introduced. In this manner, the symmetry and positive definiteness of the pressure system are not compromised. The resulting algorithm is stable, computationally very efficient, and at the same time arbitrary h.o. accurate in both space and time. The new numerical method has been thoroughly validated for approximation polynomials of degree up to N=11, using a large set of non-trivial test problems in two and three space dimensions, for which either analytical, numerical or experimental reference solutions exist.Comment: 46 pages, 15 figures, 4 table

    The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue

    Full text link
    We list the so-called Askey-scheme of hypergeometric orthogonal polynomials. In chapter 1 we give the definition, the orthogonality relation, the three term recurrence relation and generating functions of all classes of orthogonal polynomials in this scheme. In chapeter 2 we give all limit relation between different classes of orthogonal polynomials listed in the Askey-scheme. In chapter 3 we list the q-analogues of the polynomials in the Askey-scheme. We give their definition, orthogonality relation, three term recurrence relation and generating functions. In chapter 4 we give the limit relations between those basic hypergeometric orthogonal polynomials. Finally in chapter 5 we point out how the `classical` hypergeometric orthogonal polynomials of the Askey-scheme can be obtained from their q-analogues

    A Semi-Lagrangian Spectral Method for the Vlasov-Poisson System based on Fourier, Legendre and Hermite Polynomials

    Full text link
    In this work, we apply a semi-Lagrangian spectral method for the Vlasov-Poisson system, previously designed for periodic Fourier discretizations, by implementing Legendre polynomials and Hermite functions in the approximation of the distribution function with respect to the velocity variable. We discuss second-order accurate-in-time schemes, obtained by coupling spectral techniques in the space-velocity domain with a BDF time-stepping scheme. The resulting method possesses good conservation properties, which have been assessed by a series of numerical tests conducted on the standard two-stream instability benchmark problem. In the Hermite case, we also investigate the numerical behavior in dependence of a scaling parameter in the Gaussian weight. Confirming previous results from the literature, our experiments for different representative values of this parameter, indicate that a proper choice may significantly impact on accuracy, thus suggesting that suitable strategies should be developed to automatically update the parameter during the time-advancing procedure.Comment: arXiv admin note: text overlap with arXiv:1803.0930

    First and Second Order Shape Optimization based on Restricted Mesh Deformations

    Full text link
    We consider shape optimization problems subject to elliptic partial differential equations. In the context of the finite element method, the geometry to be optimized is represented by the computational mesh, and the optimization proceeds by repeatedly updating the mesh node positions. It is well known that such a procedure eventually may lead to a deterioration of mesh quality, or even an invalidation of the mesh, when interior nodes penetrate neighboring cells. We examine this phenomenon, which can be traced back to the ineptness of the discretized objective when considered over the space of mesh node positions. As a remedy, we propose a restriction in the admissible mesh deformations, inspired by the Hadamard structure theorem. First and second order methods are considered in this setting. Numerical results show that mesh degeneracy can be overcome, avoiding the need for remeshing or other strategies. FEniCS code for the proposed methods is available on GitHub

    Decoupled, Energy Stable Scheme for Hydrodynamic Allen-Cahn Phase Field Moving Contact Line Model

    Full text link
    In this paper, we present an efficient energy stable scheme to solve a phase field model incorporating contact line condition. Instead of the usually used Cahn-Hilliard type phase equation, we adopt the Allen-Cahn type phase field model with the static contact line boundary condition that coupled with incompressible Navier-Stokes equations with Navier boundary condition. The projection method is used to deal with the Navier-Stokes equa- tions and an auxiliary function is introduced for the non-convex Ginzburg-Landau bulk potential. We show that the scheme is linear, decoupled and energy stable. Moreover, we prove that fully discrete scheme is also energy stable. An efficient finite element spatial discretization method is implemented to verify the accuracy and efficiency of proposed schemes. Numerical results show that the proposed scheme is very efficient and accurat
    corecore