49,032 research outputs found

    Intrinsic Spin Hall Conductivity of MoTe2 and WTe2 Semimetals

    Full text link
    We report a comprehensive study on the intrinsic spin Hall conductivity (SHC) of semimetals MoTe2 and WTe2 by ab initio calculation. Large SHC and desirable spin Hall angles have been discovered, due to the strong spin orbit coupling effect and low charge conductivity in semimetals. Diverse anisotropic SHC values, attributed to the unusual reduced-symmetry crystalline structure, have been revealed. We report an effective method on SHC optimization by electron doping, and exhibit the mechanism of SHC variation respect to the energy shifting by the spin Berry curvature. Our work provides insights into the realization of strong spin Hall effects in 2D systems

    The influence of shc proteins and aging on whole body energy expenditure and substrate utilization in mice.

    Get PDF
    While it has been proposed that Shc family of adaptor proteins may influence aging by regulating insulin signaling and energy metabolism, the overall impact of Shc proteins on whole body energy metabolism has yet to be elucidated. Thus, the purpose of this study was to determine the influence of Shc proteins and aging on whole body energy metabolism in a mouse model under ambient conditions (22°C) and acute cold exposure (12°C for 24 hours). Using indirect respiration calorimetry, we investigated the impact of Shc proteins and aging on EE and substrate utilization (RQ) in p66 Shc-/- (ShcKO) and wild-type (WT) mice. Calorimetry measurements were completed in 3, 15, and 27 mo mice at 22°C and 12°C. At both temperatures and when analyzed across all age groups, ShcKO mice demonstrated lower 24 h total EE values than that of WT mice when EE data was expressed as either kJ per mouse, or adjusted by body weight or crude organ mass (ORGAN) (P≤0.01 for all). The ShcKO mice also had higher (P<0.05) fed state RQ values than WT animals at 22°C, consistent with an increase in glucose utilization. However, Shc proteins did not influence age-related changes in energy expenditure or RQ. Age had a significant impact on EE at 22°C, regardless of how EE data was expressed (P<0.05), demonstrating a pattern of increase in EE from age 3 to 15 mo, followed by a decrease in EE at 27 mo. These results indicate a decline in whole body EE with advanced age in mice, independent of changes in body weight (BW) or fat free mass (FFM). The results of this study indicate that both Shc proteins and aging should be considered as factors that influence energy expenditure in mice

    Study of intrinsic spin and orbital Hall effects in Pt based on a (6s, 6p, 5d) tight-binding model

    Full text link
    We study the origin of the intrinsic spin Hall conductivity (SHC) and the d-orbital Hall conductivity (OHC) in Pt based on a multiorbital tight-binding model with spin-orbit interaction. We find that the SHC reaches 1000 \hbar/e\Omega cm when the resistivity \rho is smaller than ~10 \mu\Omega cm, whereas it decreases to 300 \hbar/e\Omega cm when \rho ~ 100 \mu\Omega cm. In addition, the OHC is still larger than the SHC. The origin of huge SHE and OHE in Pt is the large ``effective magnetic flux'' that is induced by the interorbital transition between d_{xy}- and d_{x2-y2}-orbitals with the aid of the strong spin-orbit interaction.Comment: 5 page

    Spherical Hecke algebra in the Nekrasov-Shatashvili limit

    Full text link
    The Spherical Hecke central (SHc) algebra has been shown to act on the Nekrasov instanton partition functions of N=2\mathcal{N}=2 gauge theories. Its presence accounts for both integrability and AGT correspondence. On the other hand, a specific limit of the Omega background, introduced by Nekrasov and Shatashvili (NS), leads to the appearance of TBA and Bethe like equations. To unify these two points of view, we study the NS limit of the SHc algebra. We provide an expression of the instanton partition function in terms of Bethe roots, and define a set of operators that generates infinitesimal variations of the roots. These operators obey the commutation relations defining the SHc algebra at first order in the equivariant parameter ϵ2\epsilon_2. Furthermore, their action on the bifundamental contributions reproduces the Kanno-Matsuo-Zhang transformation. We also discuss the connections with the Mayer cluster expansion approach that leads to TBA-like equations.Comment: 29 pages, 3 figures (v3: redaction of section 4 improved, results unchanged

    2019 CHA Elections Results / Résultats de l’élection 2019 de la SHC

    Get PDF
    Again this year, CHA members could choose from a list of well-qualified candidates for the elections. The CHA is proud to introduce its newest Council and Nominating Committee members as well as its student representative.Encore une fois cette année, les membres de la SHC ont pu choisir parmi une liste de candidats très compétents pour l’élection. La SHC est heureuse de présenter ses plus récents membres du conseil d’administration et du comité de mises en candidature ainsi que sa représentante étudiante

    Intrinsic spin Hall effect in platinum metal

    Full text link
    Spin Hall effect in metallic Pt is studied with first-principles relativistic band calculations. It is found that intrinsic spin Hall conductivity (SHC) is as large as 2000(/e)(Ωcm)1\sim 2000 (\hbar/e)(\Omega {\rm cm})^{-1} at low temperature, and decreases down to 200(/e)(Ωcm)1\sim 200 (\hbar/e)(\Omega {\rm cm})^{-1} at room temperature. It is due to the resonant contribution from the spin-orbit splitting of the doubly degenerated dd-bands at high-symmetry LL and XX points near the Fermi level. By modeling these near degeneracies by effective Hamiltonian, we show that SHC has a peak near the Fermi energy and that the vertex correction due to impurity scattering vanishes. We therefore argue that the large spin Hall effect observed experimentally in platinum is of intrinsic nature.Comment: Accepted for publication in Phys. Rev. Let

    Spin Hall effect in a Kagome lattice driven by Rashba spin-orbit interaction

    Full text link
    Using four-terminal Landauer-B\"{u}ttiker formalism and Green's function technique, in this present paper, we calculate numerically spin Hall conductance (SHC) and longitudinal conductance of a finite size kagome lattice with Rashba spin-orbit (SO) interaction both in presence and absence of external magnetic flux in clean limit. In the absence of magnetic flux, we observe that depending on the Fermi surface topology of the system SHC changes its sign at different values of Fermi energy, along with the band center. Unlike the infinite system (where SHC is a universal constant ±e8π\pm \frac{e}{8 \pi}), here SHC depends on the external parameters like SO coupling strength, Fermi energy, etc. We show that in the presence of any arbitrary magnetic flux, periodicity of the system is lost and the features of SHC tends to get reduced because of elastic scattering. But again at some typical values of flux ($\phi=1/2, 1/4, 3/4..., etc.) the system retains its periodicity depending on its size and the features of spin Hall effect (SHE) reappears. Our predicted results may be useful in providing a deeper insight into the experimental realization of SHE in such geometries.Comment: 10 pages, 10 figure
    corecore