19,453 research outputs found
Meta‐analysis of the association between sodium‐glucose co‐transporter‐2 inhibitors and risk of skin cancer among patients with type 2 diabetes
A slight increase in melanoma risk was observed among sodium‐glucose co‐transporter‐2 (SGLT‐2) inhibitor users in the regular reports. However, the association remains uncertain. To address this issue, we performed a systematic search of electronic databases up to May 2, 2018 and a meta‐analysis of 21 randomized controlled trials (RCTs) involving 20 308 patients. We did not find a significant increase in risk of melanoma among SGLT‐2 inhibitor users (Peto odds ratio [OR], 2.17; 95% confidence interval [CI], 0.80‐5.89; I2, 0%). Similar results were observed in the subgroup analyses according to the type of SGLT‐2 inhibitor, type of control, ages of patients, race/ethnicity, and trial durations. For non‐melanoma skin cancer risk, no significant difference was observed when all trials were combined (Peto OR, 0.70; 95% CI, 0.47‐1.07; I2, 0%), while a significantly decreased risk was observed among trials with duration <52 weeks (Peto OR, 0.12; 95% CI, 0.02‐0.59; I2, 0%). No evidence of publication bias was detected in the analyses. Current evidence from RCTs did not support a significantly increased risk of skin cancer associated with SGLT‐2 inhibitors
SGLT1 in pancreatic α cells regulates glucagon secretion in mice, possibly explaining the distinct effects of SGLT2 inhibitors on plasma glucagon levels
学位記番号:医博甲173
SGLT2 Inhibitors and the Diabetic Kidney
Diabetic nephropathy (DN) is the most common cause of end-stage renal disease worldwide. Blood glucose and blood pressure control reduce the risk of developing this complication; however, once DN is established, it is only possible to slow progression. Sodium-glucose cotransporter 2 (SGLT2) inhibitors, the most recent glucose-lowering oral agents, may have the potential to exert nephroprotection not only through improving glycemic control but also through glucose-independent effects, such as blood pressure-lowering and direct renal effects. It is important to consider, however, that in patients with impaired renal function, given their mode of action, SGLT2 inhibitors are less effective in lowering blood glucose. In patients with high cardiovascular risk, the SGLT2 inhibitor empagliflozin lowered the rate of cardiovascular events, especially cardiovascular death, and substantially reduced important renal outcomes. Such benefits on DN could derive from effects beyond glycemia. Glomerular hyperfiltration is a potential risk factor for DN. In addition to the activation of the renin-angiotensin-aldosterone system, renal tubular factors, including SGLT2, contribute to glomerular hyperfiltration in diabetes. SGLT2 inhibitors reduce sodium reabsorption in the proximal tubule, causing, through tubuloglomerular feedback, afferent arteriole vasoconstriction and reduction in hyperfiltration. Experimental studies showed that SGLT2 inhibitors reduced hyperfiltration and decreased inflammatory and fibrotic responses of proximal tubular cells. SGLT2 inhibitors reduced glomerular hyperfiltration in patients with type 1 diabetes, and in patients with type 2 diabetes, they caused transient acute reductions in glomerular filtration rate, followed by a progressive recovery and stabilization of renal function. Interestingly, recent studies consistently demonstrated a reduction in albuminuria. Although these data are promising, only dedicated renal outcome trials will clarify whether SGLT2 inhibitors, in addition to their glycemic and blood pressure benefits, may provide nephroprotective effects
Effects of canagliflozin on cardiovascular biomarkers in older adults with type 2 diabetes
Background:
Sodium glucose co-transporter 2 (SGLT2) inhibitors may reduce cardiovascular and heart failure risk in patients with type 2 diabetes mellitus (T2DM).
Objectives:
To examine the effects of canagliflozin on cardiovascular biomarkers in older patients with T2DM.
Methods:
In 666 T2DM patients randomized to receive canagliflozin 100 or 300 mg or placebo, we assessed median percent change in serum N-terminal pro-B type natriuretic peptide (NT-proBNP), high-sensitivity troponin I (hsTnI) , soluble (s)ST2, and galectin-3 from baseline to 26, 52, and 104 weeks.
Results:
Both serum NT-proBNP and serum hsTnI levels increased in placebo recipients but remained largely unchanged in those randomized to canagliflozin. Hodges-Lehmann estimates of the difference in median percent change between pooled canagliflozin and placebo were –15.0%, –16.1%, and –26.8% for NT-proBNP, and –8.3%, –11.9%, and –10.0% for hsTnI at weeks 26, 52, and 104, respectively (all P <0.05). Serum sST2 was unchanged with canagliflozin and placebo over 104 weeks. Serum galectin-3 modestly increased from baseline with canagliflozin versus placebo, with significant differences observed at 26 and 52 weeks but not at 104 weeks. These results remained unchanged when only patients with complete samples were assessed.
Conclusions:
Compared to placebo, treatment with canagliflozin delayed rise in serum NT-proBNP and hsTnI over 2 years in older T2DM patients. These cardiac biomarker data provide support for beneficial cardiovascular effect of SGLT2 inhibitors in T2DM
Dapagliflozin stimulates glucagon secretion at high glucose: experiments and mathematical simulations of human A-cells.
Glucagon is one of the main regulators of blood glucose levels and dysfunctional stimulus secretion coupling in pancreatic A-cells is believed to be an important factor during development of diabetes. However, regulation of glucagon secretion is poorly understood. Recently it has been shown that Na(+)/glucose co-transporter (SGLT) inhibitors used for the treatment of diabetes increase glucagon levels in man. Here, we show experimentally that the SGLT2 inhibitor dapagliflozin increases glucagon secretion at high glucose levels both in human and mouse islets, but has little effect at low glucose concentrations. Because glucagon secretion is regulated by electrical activity we developed a mathematical model of A-cell electrical activity based on published data from human A-cells. With operating SGLT2, simulated glucose application leads to cell depolarization and inactivation of the voltage-gated ion channels carrying the action potential, and hence to reduce action potential height. According to our model, inhibition of SGLT2 reduces glucose-induced depolarization via electrical mechanisms. We suggest that blocking SGLTs partly relieves glucose suppression of glucagon secretion by allowing full-scale action potentials to develop. Based on our simulations we propose that SGLT2 is a glucose sensor and actively contributes to regulation of glucagon levels in humans which has clinical implications
Baseline characteristics and enrichment results from the SONAR trial
Aim:
The SONAR trial uses an enrichment design based on the individual response to the selective endothelin receptor antagonist atrasentan on efficacy (the degree of the individual response in the urinary albumin‐to‐creatinine ratio [UACR]) and safety/tolerability (signs of sodium retention and acute increases in serum creatinine) to assess the effects of this agent on major renal outcomes. The patient population and enrichment results are described here.
Methods:
Patients with type 2 diabetes with an estimated glomerular filtration rate (eGFR) within 25 to 75 mL/min/1.73 m2 and UACR between 300 and 5000 mg/g were enrolled. After a run‐in period, eligible patients received 0.75 mg/d of atrasentan for 6 weeks. A total of 2648 responder patients in whom UACR decreased by ≥30% compared to baseline were enrolled, as were 1020 non‐responders with a UACR decrease of <30%. Patients who experienced a weight gain of >3 kg and in whom brain natriuretic peptide exceeded ≥300 pg/mL, or who experienced an increase in serum creatinine >20% (0.5 mg/dL), were not randomized.
Results:
Baseline characteristics were similar for atrasentan responders and non‐responders. Upon entry to the study, median UACR was 802 mg/g in responders and 920 mg/g in non‐responders. After 6 weeks of treatment with atrasentan, the UACR change in responders was −48.8% (95% CI, −49.8% to −47.9%) and in non‐responders was −1.2% (95% CI, −6.4% to 3.9%). Changes in other renal risk markers were similar between responders and non‐responders except for a marginally greater reduction in systolic blood pressure and eGFR in responders.
Conclusions:
The enrichment period has successfully identified a population with a profound UACR reduction without clinical signs of sodium retention in whom a large atrasentan effect on clinically important renal outcomes is possible. The SONAR trial aims to establish whether atrasentan confers renal protection
The SGLT2 inhibitor empagliflozin for the treatment of type 2 diabetes mellitus: A bench to bedside review
INTRODUCTION: The treatment of type 2 diabetes mellitus (T2DM) continues to pose challenges for clinicians and patients. The dramatic rise in T2DM prevalence, which has paralleled the rise in obesity, has strained the healthcare system and prompted the search for therapies that not only effectively treat hyperglycemia, but are also weight neutral or promote weight loss. In most clinical situations after diagnosis, patients are advised to adopt lifestyle changes and metformin is initiated to help control blood glucose levels. However, metformin may not be tolerated, or may not be sufficient for those with higher glucose levels at diagnosis. Even among those who have initial success with metformin, the majority eventually require one or more additional agents to achieve their treatment goals. Because T2DM is a progressive disease, the requirement for combination treatment escalates over time, driving the need for therapies with complementary mechanisms of action. METHODS AND RESULTS: Online public resources were searched using “empagliflozin”, identifying 32 articles in PubMed, and 12 abstracts presented at the 2013 American Diabetes Association meeting. Peer-reviewed articles and abstracts describing preclinical studies and clinical trials were retrieved, and relevant publications included in this review. Trials registered on clinicaltrials.gov were searched for ongoing empagliflozin studies. CONCLUSION: The sodium–glucose co-transporter 2 (SGLT2) inhibitors are of great interest since they provide a novel, insulin-independent mechanism of action. The SGLT2 inhibitor empagliflozin has demonstrated promising pharmacodynamic and pharmacokinetic properties. In clinical trials, empagliflozin has demonstrated a good efficacy and safety profile in a broad range of patients with T2DM, and appears to be an attractive adjunct therapeutic option for the treatment of T2DM. Ongoing trials, including patients with T2DM and comorbidities such as hypertension, are expected to provide important additional data, which will further define the role of empagliflozin in a growing movement toward individualized approaches to diabetes care. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13300-014-0063-1) contains supplementary material, which is available to authorized users
Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis
The effect of a sodium glucose cotransporter 2 inhibitor (SGLT2i) in reducing heart failure hospitalization in the EMPA-REG OUTCOMES trial has raised the possibility of using these agents to treat established heart failure. We hypothesize that osmotic diuresis induced by SGLT2 inhibition, a distinctly different diuretic mechanism than other diuretic classes, results in greater electrolyte-free water clearance, and ultimately in greater fluid clearance from the interstitial fluid (IF) space than from the circulation, potentially resulting in congestion relief with minimal impact on blood volume, arterial filling, and organ perfusion. We utilize a mathematical model to illustrate that electrolyte-free water clearance results in a greater reduction in IF volume compared to blood volume, and that this difference may be mediated by peripheral sequestration of osmotically inactive sodium. By coupling the model with data on plasma and urinary sodium and water in healthy subjects administered either the SGLT2i dapagliflozin or loop diuretic bumetanide, we predict that dapagliflozin produces a 2-fold greater reduction in IF volume compared to blood volume, while the reduction in IF volume with bumetanide is only 78% of the reduction in blood volume. Heart failure is characterized by excess fluid accumulation, in both the vascular compartment and interstitial space, yet many heart failure patients have arterial underfilling due to low cardiac output, which may be aggravated by conventional diuretic treatment. Thus, we hypothesize that by reducing IF volume to a greater extent than blood volume, SGLT2 inhibitors might provide better control of congestion without reducing arterial filling and perfusion
Continued efforts to translate diabetes cardiovascular outcome trials into clinical practice
Diabetic patients suffer from a high rate of cardiovascular events and such risk increases with HbA1c. However, lowering HbA1c does not appear to yield the same benefit on macrovascular endpoints, as observed for microvascular endpoints. As the number of glucose-lowering medications increases, clinicians have to consider several open questions in the management of type 2 diabetes, one of which is the cardiovascular risk profile of each regimen. Recent placebo-controlled cardiovascular outcome trials (CVOTs) have responded to some of these questions, but careful interpretation is needed. After general disappointment around CVOTs assessing safety of DPP-4 inhibitors (SAVOR, TECOS, EXAMINE) and the GLP-1 receptor agonist lixisenatide (ELIXA), the EMPA-REG Outcome trial and the LEADER trial have shown superiority of the SGLT2-I empagliflozin and the GLP-1RA liraglutide, respectively, on the 3-point MACE outcome (cardiovascular death, non-fatal myocardial infarction or stroke) and cardiovascular, as well as all-cause mortality. While available mechanistic studies largely support a cardioprotective effect of GLP-1, the ability of SGLT2 inhibitor(s) to prevent cardiovascular death was unexpected and deserves future investigation. We herein review the results of completed CVOTs of glucose-lowering medications and suggest a possible treatment algorithm based on cardiac and renal co-morbidities to translate CVOT findings into clinical practice
- …
