268 research outputs found

    Symbol error rate analysis for M-QAM modulated physical-layer network coding with phase errors

    No full text
    Recent theoretical studies of physical-layer network coding (PNC) show much interest on high-level modulation, such as M-ary quadrature amplitude modulation (M-QAM), and most related works are based on the assumption of phase synchrony. The possible presence of synchronization error and channel estimation error highlight the demand of analyzing the symbol error rate (SER) performance of PNC under different phase errors. Assuming synchronization and a general constellation mapping method, which maps the superposed signal into a set of M coded symbols, in this paper, we analytically derive the SER for M-QAM modulated PNC under different phase errors. We obtain an approximation of SER for general M-QAM modulations, as well as exact SER for quadrature phase-shift keying (QPSK), i.e. 4-QAM. Afterwards, theoretical results are verified by Monte Carlo simulations. The results in this paper can be used as benchmarks for designing practical systems supporting PNC. © 2012 IEEE

    Multi-way relay networks: characterization, performance analysis and transmission scheme design

    No full text
    Multi-way relay networks (MWRNs) are a growing research area in the field of relay based wireless networks. Such networks provide a pathway for solving the ever in- creasing demand for higher data rate and spectral efficiency in a general multi-user scenario. MWRNs have potential applications in video conferencing, file sharing in a social network, as well as satellite networks and sensor networks. Recent research on MWRNs focuses on efficient transmission protocol design by harnessing different network coding schemes, higher dimensional structured codes and advanced relaying protocols. However, the existing research misses out the characterization and analysis of practical issues that influence the performance of MWRNs. Moreover, the existing transmission schemes suffer some significant limitations, that need to be solved for maximizing the benefits of MWRNs. In this thesis, we investigate the practical issues that critically influence the perfor- mance of a MWRN and propose solutions that can outperform existing schemes. To be specific, we characterize error propagation phenomenon for additive white Gaus- sian noise (AWGN) and fading channels with functional decode and forward (FDF) and amplify and forward (AF) relaying protocols, propose a new pairing scheme that out- performs the existing schemes for lattice coded FDF MWRNs in terms of the achievable rate and error performance and finally, analyze the impact of imperfect channel state information (CSI) and optimum power allocation on MWRNs. At first, we analyze the error performance of FDF and AF MWRNs with pair- wise transmission using binary phase shift keying (BPSK) modulation in AWGN and Rayleigh fading channels. We quantify the possible error events in an L-user FDF or AF MWRN and derive accurate asymptotic bounds on the probability for the general case that a user incorrectly decodes the messages of exactly k (k ∈ [1, L − 1]) other users. We show that at high signal-to-noise ratio (SNR), the higher order error events (k ≥ 3) are less probable in AF MWRN, but all error events are equally probable in a FDF MWRN. We derive the average BER of a user in a FDF or AF MWRN under high SNR conditions and provide simulation results to verify them. Next, we propose a novel user pairing scheme for lattice coded FDF MWRNs. Lattice codes can achieve the capacity of AWGN channels and are used in digital communica- tions as high-rate signal constellations. Our proposed pairing scheme selects a common user with the best average channel gain and thus, allows it to positively contribute to the overall system performance. Assuming lattice code based transmissions, we derive upper bounds on the average common rate and the average sum rate with the proposed pairing scheme. In addition, considering M-ary QAM with square constellation as a special case of lattice codes, we derive asymptotic average symbol error rate (SER) of the MWRN. We show that in terms of the achievable rates and error performance, the proposed pairing scheme outperforms the existing pairing schemes under a wide range of channel scenarios. Finally, we investigate lattice coded FDF and AF MWRNs with imperfect CSI. Con- sidering lattice codes of sufficiently large dimension, we obtain the bounds on the com- mon rate and sum rate. In addition, considering M-ary quadrature amplitude mod- ulation (QAM) with square constellations, we obtain expressions for the average SER in FDF MWRNs. For AF MWRNs, considering BPSK modulation as the simplest case of lattice codes, we obtain the average BER. Moreover, we obtain the optimum power allocation coefficients to maximize the sum rate in AF MWRN. For both FDF and AF relaying protocols, the average common rate and sum rate are decreasing functions of the estimation error. The analysis shows that the error performance of a FDF MWRN is an increasing function of both the channel estimation error and the number of users, whereas, for AF MWRN, the error performance is an increasing function of only the channel estimation error. Also, we show that to achieve the same sum rate in AF MWRN, optimum power allocation requires 7 − 9 dB less power compared to equal power allocation depending upon users’ channel conditions

    A Tutorial on Interference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions

    Get PDF
    IEEE Interference is traditionally viewed as a performance limiting factor in wireless communication systems, which is to be minimized or mitigated. Nevertheless, a recent line of work has shown that by manipulating the interfering signals such that they add up constructively at the receiver side, known interference can be made beneficial and further improve the system performance in a variety of wireless scenarios, achieved by symbol-level precoding (SLP). This paper aims to provide a tutorial on interference exploitation techniques from the perspective of precoding design in a multi-antenna wireless communication system, by beginning with the classification of constructive interference (CI) and destructive interference (DI). The definition for CI is presented and the corresponding mathematical characterization is formulated for popular modulation types, based on which optimization-based precoding techniques are discussed. In addition, the extension of CI precoding to other application scenarios as well as for hardware efficiency is also described. Proof-of-concept testbeds are demonstrated for the potential practical implementation of CI precoding, and finally a list of open problems and practical challenges are presented to inspire and motivate further research directions in this area
    corecore