18 research outputs found
An Efficient Implementation of the Head-Corner Parser
This paper describes an efficient and robust implementation of a
bi-directional, head-driven parser for constraint-based grammars. This parser
is developed for the OVIS system: a Dutch spoken dialogue system in which
information about public transport can be obtained by telephone.
After a review of the motivation for head-driven parsing strategies, and
head-corner parsing in particular, a non-deterministic version of the
head-corner parser is presented. A memoization technique is applied to obtain a
fast parser. A goal-weakening technique is introduced which greatly improves
average case efficiency, both in terms of speed and space requirements.
I argue in favor of such a memoization strategy with goal-weakening in
comparison with ordinary chart-parsers because such a strategy can be applied
selectively and therefore enormously reduces the space requirements of the
parser, while no practical loss in time-efficiency is observed. On the
contrary, experiments are described in which head-corner and left-corner
parsers implemented with selective memoization and goal weakening outperform
`standard' chart parsers. The experiments include the grammar of the OVIS
system and the Alvey NL Tools grammar.
Head-corner parsing is a mix of bottom-up and top-down processing. Certain
approaches towards robust parsing require purely bottom-up processing.
Therefore, it seems that head-corner parsing is unsuitable for such robust
parsing techniques. However, it is shown how underspecification (which arises
very naturally in a logic programming environment) can be used in the
head-corner parser to allow such robust parsing techniques. A particular robust
parsing model is described which is implemented in OVIS.Comment: 31 pages, uses cl.st
Postprandial chylomicrons and adipose tissue lipoprotein lipasi are altered in type 2 diabetes independently of obesity and whole-body insulin resistance.
An efficient implementation of the head-corner parser
This paper describes an efficient and robust implementation of a bidirectional, head-driven parser for constraint-based grammars. This parser is developed for the OVIS system: a Dutch spoken dialogue system in which information about public transport can be obtained by telephone. After a review of the motivation for head-driven parsing strategies, and head-corner parsing in particular, a nondeterministic version of the head-corner parser is presented. A memorization technique is applied to obtain a fast parser. A goal-weakening technique is introduced, which greatly improves average case efficiency, both in terms of speed and space requirements. I argue in favor of such a memorization strategy with goal-weakening in comparison with ordinary chart parsers because such a strategy can be applied selectively and therefore enormously reduces the space requir;ements of the parser, while no practical loss in time-efficiency is observed. On the contrary, experiments are described in which head-corner and left-corner parsers implemented with selective memorization and goal weakening outperform ''standard'' chart parsers. The experiments include the grammar of the OVIS system and the Alvey NL Tools grammar. Head-corner pausing is a mix of bottom-up and top-down processing. Certain approaches to robust parsing require purely bottom-up processing. Therefore, it seems that head-corner parsing is unsuitable for such robust parsing techniques. However, it is shown how underspecification (which arises very naturally in a logic programming environment) can be used in the head-corner parser to allow such robust parsing techniques. A particular robust parsing model, implemented in OVIS, is described.</p
An efficient implementation of the head-corner parser
This paper describes an efficient and robust implementation of a bidirectional, head-driven parser for constraint-based grammars. This parser is developed for the OVIS system: a Dutch spoken dialogue system in which information about public transport can be obtained by telephone. After a review of the motivation for head-driven parsing strategies, and head-corner parsing in particular, a nondeterministic version of the head-corner parser is presented. A memorization technique is applied to obtain a fast parser. A goal-weakening technique is introduced, which greatly improves average case efficiency, both in terms of speed and space requirements. I argue in favor of such a memorization strategy with goal-weakening in comparison with ordinary chart parsers because such a strategy can be applied selectively and therefore enormously reduces the space requir;ements of the parser, while no practical loss in time-efficiency is observed. On the contrary, experiments are described in which head-corner and left-corner parsers implemented with selective memorization and goal weakening outperform ''standard'' chart parsers. The experiments include the grammar of the OVIS system and the Alvey NL Tools grammar. Head-corner pausing is a mix of bottom-up and top-down processing. Certain approaches to robust parsing require purely bottom-up processing. Therefore, it seems that head-corner parsing is unsuitable for such robust parsing techniques. However, it is shown how underspecification (which arises very naturally in a logic programming environment) can be used in the head-corner parser to allow such robust parsing techniques. A particular robust parsing model, implemented in OVIS, is described.</p
