17 research outputs found

    LAD-RCNN:A Powerful Tool for Livestock Face Detection and Normalization

    Full text link
    With the demand for standardized large-scale livestock farming and the development of artificial intelligence technology, a lot of research in area of animal face recognition were carried on pigs, cattle, sheep and other livestock. Face recognition consists of three sub-task: face detection, face normalizing and face identification. Most of animal face recognition study focuses on face detection and face identification. Animals are often uncooperative when taking photos, so the collected animal face images are often in arbitrary directions. The use of non-standard images may significantly reduce the performance of face recognition system. However, there is no study on normalizing of the animal face image with arbitrary directions. In this study, we developed a light-weight angle detection and region-based convolutional network (LAD-RCNN) containing a new rotation angle coding method that can detect the rotation angle and the location of animal face in one-stage. LAD-RCNN has a frame rate of 72.74 FPS (including all steps) on a single GeForce RTX 2080 Ti GPU. LAD-RCNN has been evaluated on multiple dataset including goat dataset and gaot infrared image. Evaluation result show that the AP of face detection was more than 95% and the deviation between the detected rotation angle and the ground-truth rotation angle were less than 0.036 (i.e. 6.48{\deg}) on all the test dataset. This shows that LAD-RCNN has excellent performance on livestock face and its direction detection, and therefore it is very suitable for livestock face detection and Normalizing. Code is available at https://github.com/SheepBreedingLab-HZAU/LAD-RCNN/Comment: 8 figures, 5 table

    Adaptive Rotated Convolution for Rotated Object Detection

    Full text link
    Rotated object detection aims to identify and locate objects in images with arbitrary orientation. In this scenario, the oriented directions of objects vary considerably across different images, while multiple orientations of objects exist within an image. This intrinsic characteristic makes it challenging for standard backbone networks to extract high-quality features of these arbitrarily orientated objects. In this paper, we present Adaptive Rotated Convolution (ARC) module to handle the aforementioned challenges. In our ARC module, the convolution kernels rotate adaptively to extract object features with varying orientations in different images, and an efficient conditional computation mechanism is introduced to accommodate the large orientation variations of objects within an image. The two designs work seamlessly in rotated object detection problem. Moreover, ARC can conveniently serve as a plug-and-play module in various vision backbones to boost their representation ability to detect oriented objects accurately. Experiments on commonly used benchmarks (DOTA and HRSC2016) demonstrate that equipped with our proposed ARC module in the backbone network, the performance of multiple popular oriented object detectors is significantly improved (e.g. +3.03% mAP on Rotated RetinaNet and +4.16% on CFA). Combined with the highly competitive method Oriented R-CNN, the proposed approach achieves state-of-the-art performance on the DOTA dataset with 81.77% mAP

    Multi-Grained Angle Representation for Remote Sensing Object Detection

    Full text link
    Arbitrary-oriented object detection (AOOD) plays a significant role for image understanding in remote sensing scenarios. The existing AOOD methods face the challenges of ambiguity and high costs in angle representation. To this end, a multi-grained angle representation (MGAR) method, consisting of coarse-grained angle classification (CAC) and fine-grained angle regression (FAR), is proposed. Specifically, the designed CAC avoids the ambiguity of angle prediction by discrete angular encoding (DAE) and reduces complexity by coarsening the granularity of DAE. Based on CAC, FAR is developed to refine the angle prediction with much lower costs than narrowing the granularity of DAE. Furthermore, an Intersection over Union (IoU) aware FAR-Loss (IFL) is designed to improve accuracy of angle prediction using an adaptive re-weighting mechanism guided by IoU. Extensive experiments are performed on several public remote sensing datasets, which demonstrate the effectiveness of the proposed MGAR. Moreover, experiments on embedded devices demonstrate that the proposed MGAR is also friendly for lightweight deployments.Comment: 13 pages, 9 figures, 14 table
    corecore