1,082,389 research outputs found
Level Crossing Rate of Macrodiversity System in the Presence of Multipath Fading and Shadowing
Macrodiversity system including macrodiversity SC receiver and two microdiversity SC receivers is considered in this paper. Received signal experiences, simultaneously, both, long term fading and short term fading. Microdiversity SC receivers reduces Rayleigh fading effects on system performance and macrodiversity SC receiver mitigate Gamma shadowing effects on system performance. Closed form expressions for level crossing rate of microdiversity SC receivers output signals envelopes are calculated. This expression is used for evaluation of level crossing rate of macrodiversity SC receiver output signal envelope. Numerical expressions are illustrated to show the influence of Gamma shadowing severity on level crossing rate
Improved Successive Cancellation Flip Decoding of Polar Codes Based on Error Distribution
Polar codes are a class of linear block codes that provably achieves channel
capacity, and have been selected as a coding scheme for generation
wireless communication standards. Successive-cancellation (SC) decoding of
polar codes has mediocre error-correction performance on short to moderate
codeword lengths: the SC-Flip decoding algorithm is one of the solutions that
have been proposed to overcome this issue. On the other hand, SC-Flip has a
higher implementation complexity compared to SC due to the required
log-likelihood ratio (LLR) selection and sorting process. Moreover, it requires
a high number of iterations to reach good error-correction performance. In this
work, we propose two techniques to improve the SC-Flip decoding algorithm for
low-rate codes, based on the observation of channel-induced error
distributions. The first one is a fixed index selection (FIS) scheme to avoid
the substantial implementation cost of LLR selection and sorting with no cost
on error-correction performance. The second is an enhanced index selection
(EIS) criterion to improve the error-correction performance of SC-Flip
decoding. A reduction of in the implementation cost of logic elements
is estimated with the FIS approach, while simulation results show that EIS
leads to an improvement on error-correction performance improvement up to
dB at a target FER of .Comment: This version of the manuscript corrects an error in the previous
ArXiv version, as well as the published version in IEEE Xplore under the same
title, which has the DOI:10.1109/WCNCW.2018.8368991. The corrections include
all the simulations of SC-Flip-based and SC-Oracle decoders, along with
associated comments in-tex
- …
