31,617 research outputs found

    SAT-Based Methods for Circuit Synthesis

    Full text link
    Reactive synthesis supports designers by automatically constructing correct hardware from declarative specifications. Synthesis algorithms usually compute a strategy, and then construct a circuit that implements it. In this work, we study SAT- and QBF-based methods for the second step, i.e., computing circuits from strategies. This includes methods based on QBF-certification, interpolation, and computational learning. We present optimizations, efficient implementations, and experimental results for synthesis from safety specifications, where we outperform BDDs both regarding execution time and circuit size. This is an extended version of [2], with an additional appendix.Comment: Extended version of a paper at FMCAD'1

    Circuit Based Quantification: Back to State Set Manipulation within Unbounded Model Checking

    Get PDF
    In this paper a non-canonical circuit-based state set representation is used to efficiently perform quantifier elimination. The novelty of this approach lies in adapting equivalence checking and logic synthesis techniques, to the goal of compacting circuit based state set representations resulting from existential quantification. The method can be efficiently combined with other verification approaches such as inductive and SAT-based pre-image verifications
    corecore