3 research outputs found

    SAT-hard Cyclic Logic Obfuscation for Protecting the IP in the Manufacturing Supply Chain

    Full text link
    State-of-the-art attacks against cyclic logic obfuscation use satisfiability solvers that are equipped with a set of cycle avoidance clauses. These cycle avoidance clauses are generated in a pre-processing step and define various key combinations that could open or close cycles without making the circuit oscillating or stateful. In this paper, we show that this pre-processing step has to generate cycle avoidance conditions on all cycles in a netlist, otherwise, a missing cycle could trap the solver in an infinite loop or make it exit with an incorrect key. Then, we propose several techniques by which the number of cycles is exponentially increased as a function of the number of inserted feedbacks. We further illustrate that when the number of feedbacks is increased, the pre-processing step of the attack faces an exponential increase in complexity and runtime, preventing the correct composition of cycle avoidance clauses in a reasonable time. On the other hand, if the pre-processing is not concluded, the attack formulated by the satisfiability solver will either get stuck or exit with an incorrect key. Hence, when the cyclic obfuscation under the conditions proposed in this paper is implemented, it would impose an exponentially difficult problem for the satisfiability solver based attacks.Comment: arXiv admin note: substantial text overlap with arXiv:1804.0916

    InterLock: An Intercorrelated Logic and Routing Locking

    Full text link
    In this paper, we propose a canonical prune-and-SAT (CP&SAT) attack for breaking state-of-the-art routing-based obfuscation techniques. In the CP&SAT attack, we first encode the key-programmable routing blocks (keyRBs) based on an efficient SAT encoding mechanism suited for detailed routing constraints, and then efficiently re-encode and reduce the CNF corresponded to the keyRB using a bounded variable addition (BVA) algorithm. In the CP&SAT attack, this is done before subjecting the circuit to the SAT attack. We illustrate that this encoding and BVA-based pre-processing significantly reduces the size of the CNF corresponded to the routing-based obfuscated circuit, in the result of which we observe 100% success rate for breaking prior art routing-based obfuscation techniques. Further, we propose a new intercorrelated logic and routing locking technique, or in short InterLock, as a countermeasure to mitigate the CP&SAT attack. In Interlock, in addition to hiding the connectivity, a part of the logic (gates) in the selected timing paths are also implemented in the keyRB(s). We illustrate that when the logic gates are twisted with keyRBs, the BVA could not provide any advantage as a pre-processing step. Our experimental results show that, by using InterLock, with only three 8×\times8 or only two 16x16 keyRBs (twisted with actual logic gates), the resilience against existing attacks as well as our new proposed CP&SAT attack would be guaranteed while, on average, the delay/area overhead is less than 10% for even medium-size benchmark circuits

    NNgSAT: Neural Network guided SAT Attack on Logic Locked Complex Structures

    Full text link
    The globalization of the IC supply chain has raised many security threats, especially when untrusted parties are involved. This has created a demand for a dependable logic obfuscation solution to combat these threats. Amongst a wide range of threats and countermeasures on logic obfuscation in the 2010s decade, the Boolean satisfiability (SAT) attack, or one of its derivatives, could break almost all state-of-the-art logic obfuscation countermeasures. However, in some cases, particularly when the logic locked circuits contain complex structures, such as big multipliers, large routing networks, or big tree structures, the logic locked circuit is hard-to-be-solved for the SAT attack. Usage of these structures for obfuscation may lead a strong defense, as many SAT solvers fail to handle such complexity. However, in this paper, we propose a neural-network-guided SAT attack (NNgSAT), in which we examine the capability and effectiveness of a message-passing neural network (MPNN) for solving these complex structures (SAT-hard instances). In NNgSAT, after being trained as a classifier to predict SAT/UNSAT on a SAT problem (NN serves as a SAT solver), the neural network is used to guide/help the actual SAT solver for finding the SAT assignment(s). By training NN on conjunctive normal forms (CNFs) corresponded to a dataset of logic locked circuits, as well as fine-tuning the confidence rate of the NN prediction, our experiments show that NNgSAT could solve 93.5% of the logic locked circuits containing complex structures within a reasonable time, while the existing SAT attack cannot proceed the attack flow in them
    corecore