11,162 research outputs found

    Mainframe Relevance in Modern IT: How a 50+ year old computing platform can still play a key role in today’s businesses

    Get PDF

    Structure-Aware Dynamic Scheduler for Parallel Machine Learning

    Full text link
    Training large machine learning (ML) models with many variables or parameters can take a long time if one employs sequential procedures even with stochastic updates. A natural solution is to turn to distributed computing on a cluster; however, naive, unstructured parallelization of ML algorithms does not usually lead to a proportional speedup and can even result in divergence, because dependencies between model elements can attenuate the computational gains from parallelization and compromise correctness of inference. Recent efforts toward this issue have benefited from exploiting the static, a priori block structures residing in ML algorithms. In this paper, we take this path further by exploring the dynamic block structures and workloads therein present during ML program execution, which offers new opportunities for improving convergence, correctness, and load balancing in distributed ML. We propose and showcase a general-purpose scheduler, STRADS, for coordinating distributed updates in ML algorithms, which harnesses the aforementioned opportunities in a systematic way. We provide theoretical guarantees for our scheduler, and demonstrate its efficacy versus static block structures on Lasso and Matrix Factorization

    On the Benefit of Virtualization: Strategies for Flexible Server Allocation

    Full text link
    Virtualization technology facilitates a dynamic, demand-driven allocation and migration of servers. This paper studies how the flexibility offered by network virtualization can be used to improve Quality-of-Service parameters such as latency, while taking into account allocation costs. A generic use case is considered where both the overall demand issued for a certain service (for example, an SAP application in the cloud, or a gaming application) as well as the origins of the requests change over time (e.g., due to time zone effects or due to user mobility), and we present online and optimal offline strategies to compute the number and location of the servers implementing this service. These algorithms also allow us to study the fundamental benefits of dynamic resource allocation compared to static systems. Our simulation results confirm our expectations that the gain of flexible server allocation is particularly high in scenarios with moderate dynamics
    corecore