11,162 research outputs found
Mainframe Relevance in Modern IT: How a 50+ year old computing platform can still play a key role in today’s businesses
Structure-Aware Dynamic Scheduler for Parallel Machine Learning
Training large machine learning (ML) models with many variables or parameters
can take a long time if one employs sequential procedures even with stochastic
updates. A natural solution is to turn to distributed computing on a cluster;
however, naive, unstructured parallelization of ML algorithms does not usually
lead to a proportional speedup and can even result in divergence, because
dependencies between model elements can attenuate the computational gains from
parallelization and compromise correctness of inference. Recent efforts toward
this issue have benefited from exploiting the static, a priori block structures
residing in ML algorithms. In this paper, we take this path further by
exploring the dynamic block structures and workloads therein present during ML
program execution, which offers new opportunities for improving convergence,
correctness, and load balancing in distributed ML. We propose and showcase a
general-purpose scheduler, STRADS, for coordinating distributed updates in ML
algorithms, which harnesses the aforementioned opportunities in a systematic
way. We provide theoretical guarantees for our scheduler, and demonstrate its
efficacy versus static block structures on Lasso and Matrix Factorization
On the Benefit of Virtualization: Strategies for Flexible Server Allocation
Virtualization technology facilitates a dynamic, demand-driven allocation and
migration of servers. This paper studies how the flexibility offered by network
virtualization can be used to improve Quality-of-Service parameters such as
latency, while taking into account allocation costs. A generic use case is
considered where both the overall demand issued for a certain service (for
example, an SAP application in the cloud, or a gaming application) as well as
the origins of the requests change over time (e.g., due to time zone effects or
due to user mobility), and we present online and optimal offline strategies to
compute the number and location of the servers implementing this service. These
algorithms also allow us to study the fundamental benefits of dynamic resource
allocation compared to static systems. Our simulation results confirm our
expectations that the gain of flexible server allocation is particularly high
in scenarios with moderate dynamics
- …
