3,910 research outputs found

    On a Perceived Expressive Inadequacy of Principia Mathematica

    Get PDF
    This paper deploys a Cantor-style diagonal argument which indicates that there is more possible mathematical content than there are propositional functions in Russell and Whitehead's Principia Mathematica and similar formal systems. This technical result raises a historical question: "How did Russell, who was himself an expert in diagonal arguments, not see this coming?" It turns out that answering this question requires an appreciation of Russell's understanding of what logic is, and how he construed the relationship between logic and Principia Mathematica

    Predicativity and parametric polymorphism of Brouwerian implication

    Get PDF
    A common objection to the definition of intuitionistic implication in the Proof Interpretation is that it is impredicative. I discuss the history of that objection, argue that in Brouwer's writings predicativity of implication is ensured through parametric polymorphism of functions on species, and compare this construal with the alternative approaches to predicative implication of Goodman, Dummett, Prawitz, and Martin-L\"of.Comment: Added further references (Pistone, Poincar\'e, Tabatabai, Van Atten

    Wittgenstein’s ‘notorious paragraph’ about the Gödel Theorem

    Get PDF
    In §8 of Remarks on the Foundations of Mathematics (RFM), Appendix 3 Wittgenstein imagines what conclusions would have to be drawn if the Gödel formula P or ÂŹP would be derivable in PM. In this case, he says, one has to conclude that the interpretation of P as “P is unprovable” must be given up. This “notorious paragraph” has heated up a debate on whether the point Wittgenstein has to make is one of “great philosophical interest” revealing “remarkable insight” in Gödel’s proof, as Floyd and Putnam suggest (Floyd (2000), Floyd (2001)), or whether this remark reveals Wittgenstein’s misunderstanding of Gödel’s proof as Rodych and Steiner argued for recently (Rodych (1999, 2002, 2003), Steiner (2001)). In the following the arguments of both interpretations will be sketched and some deficiencies will be identified. Afterwards a detailed reconstruction of Wittgenstein’s argument will be offered. It will be seen that Wittgenstein’s argumentation is meant to be a rejection of Gödel’s proof but that it cannot satisfy this pretension

    Mathematical Foundations of Consciousness

    Get PDF
    We employ the Zermelo-Fraenkel Axioms that characterize sets as mathematical primitives. The Anti-foundation Axiom plays a significant role in our development, since among other of its features, its replacement for the Axiom of Foundation in the Zermelo-Fraenkel Axioms motivates Platonic interpretations. These interpretations also depend on such allied notions for sets as pictures, graphs, decorations, labelings and various mappings that we use. A syntax and semantics of operators acting on sets is developed. Such features enable construction of a theory of non-well-founded sets that we use to frame mathematical foundations of consciousness. To do this we introduce a supplementary axiomatic system that characterizes experience and consciousness as primitives. The new axioms proceed through characterization of so- called consciousness operators. The Russell operator plays a central role and is shown to be one example of a consciousness operator. Neural networks supply striking examples of non-well-founded graphs the decorations of which generate associated sets, each with a Platonic aspect. Employing our foundations, we show how the supervening of consciousness on its neural correlates in the brain enables the framing of a theory of consciousness by applying appropriate consciousness operators to the generated sets in question

    The 1900 Turn in Bertrand Russell’s Logic, the Emergence of his Paradox, and the Way Out

    Get PDF
    Russell’s initial project in philosophy (1898) was to make mathematics rigorous reducing it to logic. Before August 1900, however, Russell’s logic was nothing but mereology. First, his acquaintance with Peano’s ideas in August 1900 led him to discard the part-whole logic and accept a kind of intensional predicate logic instead. Among other things, the predicate logic helped Russell embrace a technique of treating the paradox of infinite numbers with the help of a singular concept, which he called ‘denoting phrase’. Unfortunately, a new paradox emerged soon: that of classes. The main contention of this paper is that Russell’s new conception only transferred the paradox of infinity from the realm of infinite numbers to that of class-inclusion. Russell’s long-elaborated solution to his paradox developed between 1905 and 1908 was nothing but to set aside of some of the ideas he adopted with his turn of August 1900: (i) With the Theory of Descriptions, he reintroduced the complexes we are acquainted with in logic. In this way, he partly restored the pre-August 1900 mereology of complexes and simples. (ii) The elimination of classes, with the help of the ‘substitutional theory’, and of propositions, by means of the Multiple Relation Theory of Judgment, completed this process

    Consequences of a Goedel's misjudgment

    Full text link
    The fundamental aim of the paper is to correct an harmful way to interpret a Goedel's erroneous remark at the Congress of Koenigsberg in 1930. Despite the Goedel's fault is rather venial, its misreading has produced and continues to produce dangerous fruits, as to apply the incompleteness Theorems to the full second-order Arithmetic and to deduce the semantic incompleteness of its language by these same Theorems. The first three paragraphs are introductory and serve to define the languages inherently semantic and its properties, to discuss the consequences of the expression order used in a language and some question about the semantic completeness: in particular is highlighted the fact that a non-formal theory may be semantically complete despite using a language semantically incomplete. Finally, an alternative interpretation of the Goedel's unfortunate comment is proposed. KEYWORDS: semantic completeness, syntactic incompleteness, categoricity, arithmetic, second-order languages, paradoxesComment: English version, 19 pages. Fixed and improved terminolog

    Do Goedel's incompleteness theorems set absolute limits on the ability of the brain to express and communicate mental concepts verifiably?

    Full text link
    Classical interpretations of Goedel's formal reasoning imply that the truth of some arithmetical propositions of any formal mathematical language, under any interpretation, is essentially unverifiable. However, a language of general, scientific, discourse cannot allow its mathematical propositions to be interpreted ambiguously. Such a language must, therefore, define mathematical truth verifiably. We consider a constructive interpretation of classical, Tarskian, truth, and of Goedel's reasoning, under which any formal system of Peano Arithmetic is verifiably complete. We show how some paradoxical concepts of Quantum mechanics can be expressed, and interpreted, naturally under a constructive definition of mathematical truth.Comment: 73 pages; this is an updated version of the NQ essay; an HTML version is available at http://alixcomsi.com/Do_Goedel_incompleteness_theorems.ht

    The semantics of jitter in anticipating time itself within nano-technology

    Get PDF
    The development of nano-technology calls for a careful examination of anticipatory systems at this small scale. For the characteristics of time at the boundary between classical and quantum domains are quite critical for the advancement of the new technology. It has long been well recognised that time is not absolute even in classical subjects like navigation and dynamics where idealised concepts like mean solar time, International Atomic Time and Newton’s dynamical time have had to be used. Time is the data of the Universe and belongs in the semantics of its extensional form. At the boundary between classical and quantum behaviour the uncertainty of time data becomes a significant effect and this is why it is of great importance in nanotechnology, in areas such as the interoperability of different time domains in hardware, where noise in the form of jitter causes a system to behave in an unpredictable fashion, a severe and expensive problem for anticipating how time is to be handled. A fundamental difficulty is that jitter is represented using numbers, giving rise to undecidability and incompleteness according to Gödel’s theorems. To escape the clutches of Gödel undecidability it is necessary to advance to cartesian closed categories beyond the category of sets to represent the relationship between different times as adjoint endofunctors in monad and comonad constructions
    • 

    corecore