24,812 research outputs found
Wet runways
Aircraft stopping and directional control performance on wet runways is discussed. The major elements affecting tire/ground traction developed by jet transport aircraft are identified and described in terms of atmospheric, pavement, tire, aircraft system and pilot performance factors or parameters. Research results are summarized, and means for improving or restoring tire traction/aircraft performance on wet runways are discussed
NASA diagonal-braked test vehicle evaluation of traction characteristics of grooved and ungrooved runway surfaces at Miami International Airport, Miami, Florida, 8-9 May 1973
Two runways were evaluated under artificially wetted conditions with the NASA diagonal-braked vehicle (DBV). Results of the evaluation which included a pavement drainage analysis, a pavement skid resistance analysis, and a DBV wet/dry stopping distance ratio analysis indicated that the ungrooved runway surfaces had poor water drainage characteristics and poor skid resistance under wet conditions at high speeds especially in rubbercoated areas of the runways. Grooving runways to a transverse 1-1/4 x 1/4 x 1/4 inch pattern greatly improved both the water drainage and pavement skid resistance capability of these asphaltic concrete surfaces
Prediction of dynamic pairwise wake vortex separations for approach and landing
Design and performance of the Wake Vortex Prediction and Monitoring System WSVBS are described. The WSVBS has been developed to tactically increase airport capacity for approach and landing on single runways as well as closely-spaced parallel runways. It is thought to dynamically adjust aircraft separations dependent on weather conditions and the resulting wake vortex behavior without compro-mis>ing safety. Dedicated meteorological instrumentation and short-term numerical terminal weather prediction provide the input to the prediction of wake-vortex behavior and respective safety areas. LIDAR monitors the correctness of WSVBS predictions in the most critical gates at low altitude. The WSVBS is integrated in the arrival manager AMAN of DLR. Performance tests of the WSVBS have been accomplished at Frankfurt airport in winter 2006/07 and at Munich Airport in summer 2010. Aircraft separations for landings on single runways have been compared employing the concepts of either heavy-medium weight class combinations or dynamic pairwise separations where individual aircraft type pairings are considered. For the very conservative baseline setup of the WSVBS the potential capacity gains of dynamic pairwise operations for single runways appear to be very small. On the other hand, the consideration of individual aircraft types and their respective wake characteristics may almost double the fraction of time when radar separation could be applied
Short-range passive radar for small private airports surveillance
This paper investigates the effectiveness of a passive radar for enhancing the security level in small airports and private runways. Specifically WiFi transmissions are parasitically exploited to perform detection and localization of non-cooperative targets that can be occupying the runway and the surrounding areas. Targets of interest include light/ultralight aircrafts, vehicles, people and even animals that may intrude onto the runways either intentionally or accidentally. The experimental results obtained by means of an experimental setup developed at SAPIENZA University of Rome prove the successful applicability of the proposed approach for small airports surveillance. © 2016 EuMA
Friction evaluation of unpaved, gypsum-surface runways at Northrup Strip, White Sands Missile Range, in support of Space Shuttle Orbiter landing and retrieval operations
Friction measurement results obtained on the gypsum surface runways at Northrup Strip, White Sands Missile Range, N. M., using an instrumented tire test vehicle and a diagonal braked vehicle, are presented. These runways were prepared to serve as backup landing and retrieval sites to the primary sites located at Dryden Flight Research Center for shuttle orbiter during initial test flights. Similar friction data obtained on paved and other unpaved surfaces was shown for comparison and to indicate that the friction capability measured on the dry gypsum surface runways is sufficient for operations with the shuttle orbiter and the Boeing 747 aircraft. Based on these ground vehicle friction measurements, estimates of shuttle orbiter and aircraft tire friction performance are presented and discussed. General observations concerning the gypsum surface characteristics are also included and several recommendations are made for improving and maintaining adequate surface friction capabilities prior to the first shuttle orbiter landing
Factors influencing aircraft ground handling performance
Problems associated with aircraft ground handling operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from tests with instrumented ground vehicles and aircraft, and aircraft wet runway accident investigation are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways
RAE aircraft tests on grooved, open graded
Aircraft tests on grooved, open graded, and asphalt runways in Englan
A new method for measuring slipperiness of airport runways and other paved surfaces
Aircraft stopping distances on wet runways are accurately predicted by measurements taken with a conventional automobile equipped with diagonal braking system and simple instrumentation for recording stopping distances
Simulation studies of STOL airplane operations in metropolitan downtown and airport air traffic control environments
The operating problems and equipment requirements for STOL airplanes in terminal area operations in simulated air traffic control (ATC) environments were studied. These studies consisted of Instrument Flight Rules (IFR) arrivals and departures in the New York area to and from a downtown STOL port, STOL runways at John F. Kennedy International Airport, or STOL runways at a hypothetical international airport. The studies were accomplished in real time by using a STOL airplane flight simulator. An experimental powered lift STOL airplane and two in-service airplanes having high aerodynamic lift (i.e., STOL) capability were used in the simulations
- …