5,065 research outputs found

    A Domain Specific Approach to High Performance Heterogeneous Computing

    Full text link
    Users of heterogeneous computing systems face two problems: firstly, in understanding the trade-off relationships between the observable characteristics of their applications, such as latency and quality of the result, and secondly, how to exploit knowledge of these characteristics to allocate work to distributed computing platforms efficiently. A domain specific approach addresses both of these problems. By considering a subset of operations or functions, models of the observable characteristics or domain metrics may be formulated in advance, and populated at run-time for task instances. These metric models can then be used to express the allocation of work as a constrained integer program, which can be solved using heuristics, machine learning or Mixed Integer Linear Programming (MILP) frameworks. These claims are illustrated using the example domain of derivatives pricing in computational finance, with the domain metrics of workload latency or makespan and pricing accuracy. For a large, varied workload of 128 Black-Scholes and Heston model-based option pricing tasks, running upon a diverse array of 16 Multicore CPUs, GPUs and FPGAs platforms, predictions made by models of both the makespan and accuracy are generally within 10% of the run-time performance. When these models are used as inputs to machine learning and MILP-based workload allocation approaches, a latency improvement of up to 24 and 270 times over the heuristic approach is seen.Comment: 14 pages, preprint draft, minor revisio

    A metadata-enhanced framework for high performance visual effects

    No full text
    This thesis is devoted to reducing the interactive latency of image processing computations in visual effects. Film and television graphic artists depend upon low-latency feedback to receive a visual response to changes in effect parameters. We tackle latency with a domain-specific optimising compiler which leverages high-level program metadata to guide key computational and memory hierarchy optimisations. This metadata encodes static and dynamic information about data dependence and patterns of memory access in the algorithms constituting a visual effect – features that are typically difficult to extract through program analysis – and presents it to the compiler in an explicit form. By using domain-specific information as a substitute for program analysis, our compiler is able to target a set of complex source-level optimisations that a vendor compiler does not attempt, before passing the optimised source to the vendor compiler for lower-level optimisation. Three key metadata-supported optimisations are presented. The first is an adaptation of space and schedule optimisation – based upon well-known compositions of the loop fusion and array contraction transformations – to the dynamic working sets and schedules of a runtimeparameterised visual effect. This adaptation sidesteps the costly solution of runtime code generation by specialising static parameters in an offline process and exploiting dynamic metadata to adapt the schedule and contracted working sets at runtime to user-tunable parameters. The second optimisation comprises a set of transformations to generate SIMD ISA-augmented source code. Our approach differs from autovectorisation by using static metadata to identify parallelism, in place of data dependence analysis, and runtime metadata to tune the data layout to user-tunable parameters for optimal aligned memory access. The third optimisation comprises a related set of transformations to generate code for SIMT architectures, such as GPUs. Static dependence metadata is exploited to guide large-scale parallelisation for tens of thousands of in-flight threads. Optimal use of the alignment-sensitive, explicitly managed memory hierarchy is achieved by identifying inter-thread and intra-core data sharing opportunities in memory access metadata. A detailed performance analysis of these optimisations is presented for two industrially developed visual effects. In our evaluation we demonstrate up to 8.1x speed-ups on Intel and AMD multicore CPUs and up to 6.6x speed-ups on NVIDIA GPUs over our best hand-written implementations of these two effects. Programmability is enhanced by automating the generation of SIMD and SIMT implementations from a single programmer-managed scalar representation

    Model Coupling between the Weather Research and Forecasting Model and the DPRI Large Eddy Simulator for Urban Flows on GPU-accelerated Multicore Systems

    Full text link
    In this report we present a novel approach to model coupling for shared-memory multicore systems hosting OpenCL-compliant accelerators, which we call The Glasgow Model Coupling Framework (GMCF). We discuss the implementation of a prototype of GMCF and its application to coupling the Weather Research and Forecasting Model and an OpenCL-accelerated version of the Large Eddy Simulator for Urban Flows (LES) developed at DPRI. The first stage of this work concerned the OpenCL port of the LES. The methodology used for the OpenCL port is a combination of automated analysis and code generation and rule-based manual parallelization. For the evaluation, the non-OpenCL LES code was compiled using gfortran, fort and pgfortran}, in each case with auto-parallelization and auto-vectorization. The OpenCL-accelerated version of the LES achieves a 7 times speed-up on a NVIDIA GeForce GTX 480 GPGPU, compared to the fastest possible compilation of the original code running on a 12-core Intel Xeon E5-2640. In the second stage of this work, we built the Glasgow Model Coupling Framework and successfully used it to couple an OpenMP-parallelized WRF instance with an OpenCL LES instance which runs the LES code on the GPGPI. The system requires only very minimal changes to the original code. The report discusses the rationale, aims, approach and implementation details of this work.Comment: This work was conducted during a research visit at the Disaster Prevention Research Institute of Kyoto University, supported by an EPSRC Overseas Travel Grant, EP/L026201/

    Statistical performance analysis with dynamic workload using S-NET

    Get PDF
    Volkmar Wieser, Philip K. F. Hölzenspies, Michael Roßbory, and Raimund Kirner, 'Statistical performance analysis with dynamic workload using S-NET'. Paper presented at the Workshop on Feedback-Directed Compiler Optimization for Multi-Core Architectures. Paris, France 23-25 January 2012In this paper the ADVANCE approach for engineering con- current software systems with well-balanced hardware ef- ficiency is adressed using the stream processing language S-Net. To obtain the cost information in the concurrent system the metrics throughput, latency, and jitter are evalu- ated by analyzing generated synthetical data as well as using an industrial related application in the future. As fall-out an Eclipse plugin for S-Net has been developed to provide sup- port for syntax highlighting, content assistance, hover help, and more, for easier and faster development. The presented results of the current work are on the one hand an indicator for the status quo of the ADVANCE vision and on the other hand used to improve the applied statistical analysis tech- niques within ADVANCE. Like the ADVANCE project, this work is still under development, but further improvements and speedups are expected in the near future

    Model Exploration Using OpenMOLE - a workflow engine for large scale distributed design of experiments and parameter tuning

    Get PDF
    OpenMOLE is a scientific workflow engine with a strong emphasis on workload distribution. Workflows are designed using a high level Domain Specific Language (DSL) built on top of Scala. It exposes natural parallelism constructs to easily delegate the workload resulting from a workflow to a wide range of distributed computing environments. In this work, we briefly expose the strong assets of OpenMOLE and demonstrate its efficiency at exploring the parameter set of an agent simulation model. We perform a multi-objective optimisation on this model using computationally expensive Genetic Algorithms (GA). OpenMOLE hides the complexity of designing such an experiment thanks to its DSL, and transparently distributes the optimisation process. The example shows how an initialisation of the GA with a population of 200,000 individuals can be evaluated in one hour on the European Grid Infrastructure.Comment: IEEE High Performance Computing and Simulation conference 2015, Jun 2015, Amsterdam, Netherland
    • …
    corecore