46,748 research outputs found

    Quantitative analysis of ruminal methanogenic microbial populations in beef cattle divergent in phenotypic residual feed intake (RFI) offered contrasting diets

    Get PDF
    peer-reviewedBackground Methane (CH4) emissions in cattle are an undesirable end product of rumen methanogenic fermentative activity as they are associated not only with negative environmental impacts but also with reduced host feed efficiency. The aim of this study was to quantify total and specific rumen microbial methanogenic populations in beef cattle divergently selected for residual feed intake (RFI) while offered (i) a low energy high forage (HF) diet followed by (ii) a high energy low forage (LF) diet. Ruminal fluid was collected from 14 high (H) and 14 low (L) RFI animals across both dietary periods. Quantitative real time PCR (qRT-PCR) analysis was conducted to quantify the abundance of total and specific rumen methanogenic microbes. Spearman correlation analysis was used to investigate the association between the relative abundance of methanogens and animal performance, rumen fermentation variables and diet digestibility. Results Abundance of methanogens, did not differ between RFI phenotypes. However, relative abundance of total and specific methanogen species was affected (P < 0.05) by diet type, with greater abundance observed while animals were offered the LF compared to the HF diet. Conclusions These findings suggest that differences in abundance of specific rumen methanogen species may not contribute to variation in CH4 emissions between efficient and inefficient animals, however dietary manipulation can influence the abundance of total and specific methanogen species.Funding for the development and main work of this research was provided under the National Development Plan, through the Research Stimulus Fund, administered by the Department of Agriculture, Fisheries & Food, Ireland RSF 05 224

    Nutrient Digestibility and Performances of Frisian Holstein Calves Fed with Pennisetum Purpureum and Inoculated with Buffalo's Rumen Bacteria

    Full text link
    Buffalo's rumen bacteria (BRB) are potential in digesting fiber feed. BRB already adapted well with low quality forages and agricultural byproducts. The aim of this study was to determine the effect of buffalo's rumen bacteria (BRB) consortium inoculated into preweaning Frisian Holstein calves on nutrient digestibility, physiological status, mineral uptake, and blood profile. This study used 14 isolates of bacteria isolated from rumen fluid of four local buffalos. The research units consisted of seven Frisian Holstein calves at two weeks old with the average body weight of 43.6±4.5 kg. Calves were inoculated with 20 mL of buffalo's rumen bacteria isolates [4.56 x 109 cfu/mL] every morning for 10 weeks. The calves were divided into two groups i.e., three calves received bacterial inoculation and four calves without any inoculation. The variables which were analyzed in the preweaning and weaning period were feed intake, digestibility, average daily gain (ADG), feed conversion ratio (FCR), rumen fermentation characteristics, body weight, physiological status, blood profile, and mineral status. Data were analyzed statistically using t-test. The results showed that inoculation of buffalo's rumen bacteria into Frisian Holstein calves effectively increased feed intake, characteristics of leukocytes and neutrophils, and cobalt (Co) uptake during the weaning period. Inoculation of rumen bacteria improved rumen pH during preweaning and weaning periods. Inoculation of rumen bacteria also had no negative effects on digestibility, feed conversion (FCR), average daily gain (ADG), and physiological status

    Feed intake pattern, behaviour, rumen characteristics and blood metabolites of finishing beef steers offered total mixed rations constituted at feeding or ensiling

    Get PDF
    peer-reviewedTwo experiments were undertaken. In Experiment 1, behaviour, intake pattern and blood metabolites, were recorded for steers offered total mixed rations (TMR) based on grass silage and concentrates, and constituted either at ensiling (E-TMR) or feedout (F-TMR). Fourteen continental crossbred steers (mean starting weight 505 (s.d. 41.5) kg) were assigned to each of the following eight treatments: grass silage offered ad libitum (SO), E-TMR diets constituted in approximate dry matter (DM) ratios of grass:concentrates of 75:25 (EL), 50:50 (EM) and 25:75 (EH), F-TMR diets constituted in approximate DM ratios of grass silage:concentrates of 75:25 (FL), 50:50 (FM) and 25:75 (FH), and finally concentrates ad libitum (AL). Total DM intake increased linearly (P < 0.001) and the time spent eating and ruminating decreased linearly (P < 0.001) with increasing concentrate proportion. Animals on the F-TMR diets had higher total DM intakes (P < 0.05) and plasma glucose (P < 0.05) and urea (P < 0.001) concentrations than animals on the corresponding E-TMR diets. No effect of method of feed preparation on intake pattern or behaviour was recorded. In Experiment 2, four ruminally cannulated Holstein-Friesian steers of mean initial live weight 630 (s.d. 23.2) kg were used to evaluate rumen characteristics for four of the above diets (FL, EL, FH and EH) in a 4 × 4 latin square design. Higher concentrate diets resulted in lower rumen pH (P < 0.05), higher lactic acid (P < 0.001) and ammonia (P < 0.05) concentrations and lower acetate:propionate (P < 0.05). F-TMR was associated with a higher (P < 0.05) rumen volatile fatty acid concentration but no difference in other rumen fermentation characteristics compared to E-TMR. Concentrate proportion and method of feed preparation had no effect (P > 0.05) on rumen pool sizes but animals consuming the high concentrate diet had a faster (P < 0.05) rumen passage rate of NDF than animals on the low concentrate diet.B. Cummins was in receipt of a Teagasc Walsh Fellowship

    In vitro study of dietary factors affecting the biohydrogenation shift from trans-11 to trans-10 fatty acids in the rumen of dairy cows

    Get PDF
    On the basis of the isomer-specific effects of trans fatty acids (FA) on human health, and the detrimental effect of t10,c12-conjugated linoleic acid (CLA) on cows’ milk fat production, there is a need to identify factors that affect the shift from trans-11 to trans-10 pathway during ruminal biohydrogenation of FA. This experiment was conducted in vitro and aimed at separating the effects of the diet of the donor cows from those of the fermentative substrate, which is necessary to prevent this shift. A total of four dry Holstein dairy cows were used in a 434 Latin square design. They received 12 kg of dry matter per day of four diets based on maize silage during four successive periods: the control diet (22% starch, ,3% fat); the high-starch diet, supplemented with wheat plus barley (35% starch, ,3% crude fat); the sunflower oil diet, supplemented with 5% of sunflower oil (20% starch, 7.6% crude fat); and the high-starch plus oil diet (33% starch, 7.3% crude fat). Ruminal fluid of each donor cow was incubated for 5 h with four substrates having similar chemical composition to the diets, replacing sunflower oil by pure linoleic acid (LA). The efficiency of isomerisation of LA to CLA was the highest when rumen fluids from cows receiving dietary oil were incubated with added LA. The shift from trans-11 to trans-10 isomers was induced in vitro by high-starch diets and the addition of LA. Oil supplementation to the diet of the donor cows increased this shift. Conversely, the trans-10 isomer balance was always low when no LA was added to incubation cultures. These results showed that a large accumulation of trans-10 FA was only observed with an adapted microflora, as well as an addition of non-esterified LA to the incubation substrate

    Metabolism of soluble proteins by rumen microorganisms and the influence of condensed tannins on nitrogen solubility and degradation

    Get PDF
    The amino acid requirements of ruminants are met by two sources; microbes leaving the rumen and dietary protein escaping fermentation in the rumen. Much ruminant research has therefore focused on improving amino acid supply to the duodenum by increasing both microbial protein synthesis and escape of feed proteins from the rumen. The escape of dietary protein is dependent on the degradation characteristics and retention time in the rumen. The overall aims of this thesis were to increase the knowledge of ruminal degradation of buffer soluble proteins and to investigate the effect of condensed tannins on the degradation. The thesis examines the effect of trichloroacetic acid, perchloric acid, and tungstic acid on detection and recovery of feed peptides and chemically-defined peptides. Twenty-five feeds were screened for buffer soluble protein N. In vitro ruminal degradation rates of buffer soluble proteins were estimated in 11 of these feeds. Buffer soluble protein from peas or cold-pressed rapeseed cake was given as a pulse dose together with a liquid marker to lactating dairy cows, to investigate rumen in vivo degradation rates. The concentration of condensed tannins was determined for birdsfoot trefoil (Lotus corniculatus L.), big trefoil (L. uliginosus Schkur.) and sainfoin (Onobrychis viciifolia Scop.) and related to nitrogen solubility in fresh-frozen and ensiled material and ruminal in vitro degradation. The different protein precipitants did not alter detection of peptides formed in a ruminal in vitro system. The recovery of an eight-residue peptide was 0.66, 0.88, and 0.91 for tungstic acid, perchloric acid, and trichloroacetic acid, respectively. The content of soluble protein N in feeds ranged from 0 to 874 g/kg buffer soluble N with the highest contents for lupine, peas, and cold-pressed rapeseed cake. Fractional degradation rates determined in vitro for soluble protein ranged from 0.18 (linseed cake) to 1.0 /h (casein). Soluble protein from soybean meal, peas, and lupine were degraded at intermediate rates. Soluble proteins given as a pulse dose were rapidly degraded in vivo. Results were disturbed by slow mixing in the rumen. In several cases, concentration of the liquid marker was higher after 1 h than 0.5 h post dosing. Based on two experiments and a total of nine varieties of birdsfoot trefoil, the concentration of condensed tannins determined by a radial diffusion method ranged from 3 to 17 g/kg DM. The tannin content for sainfoin and big trefoil was 21.6 (maximum concentration) and 24.8 g/kg DM, respectively. Buffer N solubility and ruminal in vitro N degradability were negatively correlated to tannin content. Tannin content and wilting time cumulatively reduced buffer soluble nitrogen in birdsfoot trefoil silage. This thesis shows that there is no distinct cut-off for peptide size when using different protein precipitation agents. Soluble proteins degrade at different rates depending on source. As they are not instantly degraded, they must contribute to the dietary amino acid supply of the ruminant. The in sacco method, which assumes complete degradation of soluble proteins should not be used for feeds high in soluble proteins

    Nutrient Digestibility and Productivity of Bali Cattle Fed Fermented Hymenachne Amplexia­calis Based Rations Supplemented with Leucaena Leucocephala

    Full text link
    An experiment was conducted to study the effects of lamtoro (Leucaena leucocephala) leaf supplementation in fermented kumpai grass (Hymenachne amplexia­calis) based rations on the productivity of Bali cattle. Variables measured were dry matter and organic matter intakes, nutrient digestibility (dry matter, organic matter, crude protein, and crude fiber), body weight gain, and feed efficiency. The types of rations were: Ration A= 45% fermented kumpai grass + 40% benggala grass + 15% concentrate + 0% lamtoro leaf, Ration B= 45% fermented kumpai grass + 30% benggala grass + 15% concentrate + 10% lamtoro leaf, Ration C= 45% fermented kumpai grass + 20% benggala grass + 15% concentrate + 20% lamtoro leaf, and Ration D= 45% fermented kumpai grass + 10% benggala grass + 15% concentrate + 30% lamtoro leaf. The supplementation of lamtoro leaf up to 30% into the ration could increase (P&lt;0.05) dry matter and organic matter intakes, and crude protein digestibility. The highest body weight gain and feed efficiency were found in Bali cattle fed ration with 20% lamtoro leaf supplementation. The level of lamtoro leaf supplementation in the ration did not affect the digestibility of dry matter, organic matter, and crude fiber. It was concluded that the supplementation of lamtoro leaf in the ration could increase dry matter, organic matter, and crude protein intakes. Addition of 20% lamtoro leaf gave the best effect on the increased body weight gain and feed efficiency in Bali cattle

    Methodological factors affecting gas and methane production during in vitro rumen fermentation evaluated by meta-analysis approach

    Get PDF
    Effects of some methodological factors on in vitro measures of gas production (GP, mL/g DM), CH4 production (mL/g DM) and proportion (% CH4 on total GP) were investigated by meta-analysis. These factors were considered: pressure in the GP equipment (0 = constant; 1 = increasing), incubation time (0 = 24; 1 = 65 48 h), time of rumen fluid collection (0 = before feeding; 1 = after feeding of donor animals), donor species of rumen fluid (0 = sheep; 1 = bovine), presence of N in the buffer solution (0 = presence; 1 = absence), and ratio between amount of buffered rumen fluid and feed sample (BRF/FS; 0 = 64 130 mL/g DM; 1 = 130\u2013140 mL/g DM; 2 = 65 140 mL/g DM). The NDF content of feed sample incubated (NDF) was considered as a continuous variable. From an initial database of 105 papers, 58 were discarded because one of the above-mentioned factors was not stated. After discarding 17 papers, the final dataset comprised 30 papers (339 observations). A preliminary mixed model analysis was carried out on experimental data considering the study as random factor. Variables adjusted for study effect were analyzed using a backward stepwise analysis including the above-mentioned variables. The analysis showed that the extension of incubation time and reduction of NDF increased GP and CH4 values. Values of GP and CH4 also increased when rumen fluid was collected after feeding compared to before feeding (+26.4 and +9.0 mL/g DM, for GP and CH4), from bovine compared to sheep (+32.8 and +5.2 mL/g DM, for GP and CH4), and when the buffer solution did not contain N (+24.7 and +6.7 mL/g DM for GP and CH4). The increase of BRF/FS ratio enhanced GP and CH4 production (+7.7 and +3.3 mL/g DM per each class of increase, respectively). In vitro techniques for measuring GP and CH4 production are mostly used as screening methods, thus a full standardization of such techniques is not feasible. However, a greater harmonization of analytical procedures (i.e., a reduction in the number of available protocols) would be useful to facilitate comparison between results of different experiments
    corecore