82,885 research outputs found

    Multiband photometry of a Patroclus-Menoetius mutual event: Constraints on surface heterogeneity

    Get PDF
    We present the first complete multiband observations of a binary asteroid mutual event. We obtained high-cadence, high-signal-to-noise photometry of the UT 2018 April 9 inferior shadowing event in the Jupiter Trojan binary system Patroclus-Menoetius in four Sloan bands −- g′g', r′r', i′i', and z′z'. We use an eclipse lightcurve model to fit for a precise mid-eclipse time and estimate the minimum separation of the two eclipsing components during the event. Our best-fit mid-eclipse time of 2458217.80943−0.00050+0.000572458217.80943^{+0.00057}_{-0.00050} is 19 minutes later than the prediction of Grundy et al. (2018); the minimum separation between the center of Menoetius' shadow and the center of Patroclus is 72.5±0.772.5\pm0.7 km −- slightly larger than the predicted 69.5 km. Using the derived lightcurves, we find no evidence for significant albedo variations or large-scale topographic features on the Earth-facing hemisphere and limb of Patroclus. We also apply the technique of eclipse mapping to place an upper bound of ∼\sim0.15 mag on wide-scale surface color variability across Patroclus.Comment: 5 pages, 3 figures, accepted for publication in A

    A search for starlight reflected from HD 75289 b

    Full text link
    We have used a doppler tomographic analysis to conduct a deep search for the starlight reflected from the planetary companion to HD 75289. In 4 nights on VLT2/UVES in January 2003, we obtained 684 high resolution echelle spectra with a total integration time of 26 hours. We establish an upper limit on the planet's geometric albedo p < 0.12 (to the 99.9% significance level) at the most probable orbital inclination i ~ 60 degrees, assuming a grey albedo, a Venus-like phase function and a planetary radius R_p = 1.6 R_Jup. We are able to rule out some combinations of the predicted planetary radius and atmospheric albedo models with high, reflective cloud decks.Comment: 5 pages, 5 figures, MNRAS accepted 12 Oct 200

    Further constraints on the optical transmission spectrum of HAT-P-1b

    Get PDF
    We report on novel observations of HAT-P-1 aimed at constraining the optical transmission spectrum of the atmosphere of its transiting Hot-Jupiter exoplanet. Ground-based differential spectrophotometry was performed over two transit windows using the DOLORES spectrograph at the Telescopio Nazionale Galileo (TNG). Our measurements imply an average planet to star radius ratio equal to Rp/R⋆\rm R_p/R_{\star}=(0.1159±\pm0.0005). This result is consistent with the value obtained from recent near infrared measurements of this object but differs from previously reported optical measurements being lower by around 4.4 exoplanet scale heights. Analyzing the data over 5 different spectral bins 600\AA \, wide we observed a single peaked spectrum (3.7 σ\rm\sigma level) with a blue cut-off corresponding to the blue edge of the broad absorption wing of sodium and an increased absorption in the region in between 6180-7400\AA. We also infer that the width of the broad absorption wings due to alkali metals is likely narrower than the one implied by solar abundance clear atmospheric models. We interpret the result as evidence that HAT-P-1b has a partially clear atmosphere at optical wavelengths with a more modest contribution from an optical absorber than previously reported.Comment: Accepted by Ap

    Lens magnification by CL0024+1654 in the U and R band

    Get PDF
    [ABRIDGED] We estimate the total mass distribution of the galaxy cluster CL0024+1654 from the measured source depletion due to lens magnification in the R band. Within a radius of 0.54Mpc/h, a total projected mass of (8.1+/-3.2)*10^14 M_sol/h (EdS) is measured, which corresponds to a mass- to-light ratio of M/L(B)=470+/-180. We compute the luminosity function of CL0024+1654 in order to estimate contamination of the background source counts from cluster galaxies. Three different magnification-based reconstruction methods are employed using both local and non-local techniques. We have modified the standard single power-law slope number count theory to incorporate a break and applied this to our observations. Fitting analytical magnification profiles of different cluster models to the observed number counts, we find that the cluster is best described either by a NFW model with scale radius r_s=334+/-191 kpc/h and normalisation kappa_s=0.23+/-0.08 or a power-law profile with slope xi=0.61+/-0.11, central surface mass density kappa_0=1.52+/-0.20 and assuming a core radius of r_core=35 kpc/h. The NFW model predicts that the cumulative projected mass contained within a radius R scales as M(<R)=2.9*10^14*(R/1')^[1.3-0.5lg (R/1')] M_sol/h. Finally, we have exploited the fact that flux magnification effectively enables us to probe deeper than the physical limiting magnitude of our observations in searching for a change of slope in the U band number counts. We rule out both a total flattening of the counts with a break up to U_AB<=26.6 and a change of slope, reported by some studies, from dlog N/dm=0.4->0.15 up to U_AB<=26.4 with 95% confidence.Comment: 19 pages, 12 figures, submitted to A&A. New version includes more robust U band break analysis and contamination estimates, plus new plot

    Deep rest-frame far-UV spectroscopy of the giant Lyman-alpha emitter 'Himiko'

    Get PDF
    We present deep 10h VLT/XSHOOTER spectroscopy for an extraordinarily luminous and extended Lya emitter at z=6.595 referred to as Himiko and first discussed by Ouchi et al. (2009), with the purpose of constraining the mechanisms powering its strong emission. Complementary to the spectrum, we discuss NIR imaging data from the CANDELS survey. We find neither for HeII nor any metal line a significant excess, with 3 sigma upper limits of 6.8, 3.1, and 5.8x10^{-18} erg/s/cm^2 for CIV λ\lambda1549, HeII λ\lambda1640, CIII] λ\lambda1909, respectively, assuming apertures with 200 km/s widths and offset by -250 km/s w.r.t to the peak Lya redshift. These limits provide strong evidence that an AGN is not a major contribution to Himiko's Lya flux. Strong conclusions about the presence of PopIII star-formation or gravitational cooling radiation are not possible based on the obtained HeII upper limit. Our Lya spectrum confirms both spatial extent and flux (8.8+/-0.5x10^{-17} erg/s/cm^2) of previous measurements. In addition, we can unambiguously exclude any remaining chance of it being a lower redshift interloper by significantly detecting a continuum redwards of Lya, while being undetected bluewards
    • …
    corecore