43,554 research outputs found

    First principles studies of the size and shape effects on reactivity of the Se modified Ru nanoparticles

    Full text link
    We present here the results of our density-functional-theory-based calculations of the electronic and geometric structures and energetics of Se and O adsorption on Ru 93- and 105-atom nanoparticles. These studies have been inspired by the fact that Se/Ru nanoparticles are considered promising electrocatalysts for the oxygen reduction reaction (ORR) on the direct methanol fuel cell cathodes and the oxygen binding energy is a descriptor for the catalyst activity towards this reaction. We find the character of chemical bonding of Se on a flat nanoparticle facet to be ionic, similar to that obtained earlier for the Se/Ru(0001) surface, while in the case of a low coordinated Ru configuration there is an indication of some covalent contribution to the bonding leading to an increase in Se binding energy. Se and O co-adsorbed on the flat facet, both accept electronic charge from Ru, whereas the adsorption on low-coordinated sites causes more complicated valence charge redistribution. The Se modification of the Ru particles leads to weakening of the oxygen bonding to the particle. However, overall, O binding energies are found to be higher for the particles than for Se/Ru(0001). High reactivity of the Se/Ru nanoparticles found in this work is not favorable for ORR. We thus expect that larger particles with well-developed flat facets are more efficient ORR catalysts than small nanoparticles with a large fraction of under-coordinated adsorption sites

    Study on the Hydrogenation of C0₂ over α-Al₂0₃ Supported Ru Nanoparticles Prepared by the Barrel-Sputtering Method

    Get PDF
    Catalytic hydrogenation of CO₂over α-Al₂O₃ supported Ru nanoparticles (Ru/Al₂O₃)prepared by"barrel-sputtering" and conventional "wet impregnation" methods was investigated. Highly dispersed Ru nanoparticles were obtained by using the barrel-sputtering method. The mean particle diameter of Ru nanoparticles increased from ca. 5.5 to ca. 13.2 nm with an increase in the amount of Ru loaded. On the other hand, Ru particles were agglomerated when the impregnation method was used. Mean particle diameter of resultant Ru particles was 13.4 nm. Both catalysts showed selective methane production by hydrogenation of CO₂, and Ru/Al₂O₃ prepared by the barrel-sputtering method exhibited higher activity than that of Ru/Al₂O₃ prepared by the wet impregnation method. The turnover number (TON) of methane formation linearly decreased with an increase in the mean diameter of Ru nanoparticles

    Bulk or surface grafted silylated Ru(ii) complexes on silica as luminescent nanomaterials

    Get PDF
    A series of Ru(II) complexes with monosilylated-dipyridine ligand have been synthesized and fully characterized and were then covalently attached to silica nanoparticles. Two types of hybrids were obtained depending on the experimental procedure. In the first approach, metal complexes were incorporated inside the silica nanoparticles leaving a free hydroxylated silica surface for further functionalization. These silica based nanohybrids are similar to the well known nanoparticles encapsulating [Ru(bpy)3]2+ complexes preventing the release of the dye when used in aqueous or organic solutions. Size and luminescence properties vary throughout the series of metal complexes. The second approach leads to ruthenium(II) complexes covalently attached to the silica nanoparticle surface via hydrolysis and condensation of the ethoxysilyl group with silanol sites of Ludox type silica nanoparticles. This leads to the grafting of a monolayer for complexes with the monoethoxysilyl dipyridine ligand. In contrast, the complexes with triethoxysilyl ligands can lead to small amounts of oligomers, but their quantity is limited by the sterical constraints imposed by the molecular structure. The size of the hybrids depends on the starting particles. 29Si and 13C solid state NMR are used to characterize silica surface properties whereas TEM and SEM confirm nanosize and morphology of the hybrids. The complexes and the nanohybrids are luminescent, with variations for ruthenium(II) complexes that are covalently incorporated or grafted on the silica surfac

    Core-Shell Assisted Bimetallic Assembly of Pt and Ru Nanoparticles by DNA Hybridization

    Get PDF
    We have discovered that the current protocols to assemble Au nanoparticles based on DNA hybridization do not work well with the small metal nanoparticles (e.g. 5 nm Au, 3.6 nm Pt and 3.2 nm Ru particles). Further investigations revealed the presence of strong interaction between the oligonucleotide backbone and the surface of the small metal nanoparticles. The oligonucleotides in this case are recumbent on the particle surface and are therefore not optimally oriented for hybridization. The nonspecific adsorption of oligonucleotides on small metal nanoparticles must be overcome before DNA hybridization can be accepted as a general assembly method. Two methods have been suggested as possible solutions to this problem. One is based on the use of stabilizer molecules which compete with the oligonucleotides for adsorption on the metal nanoparticle surface. Unfortunately, the reported success of this approach in small Au nanoparticles (using K₂BSPP) and Au films (using 6-mercapto-1-hexanol) could not be extended to the assembly of Pt and Ru nanoparticles by DNA hybridization. The second approach is to simply use larger metal particles. Indeed most reports on the DNA hybridization induced assembly of Au nanoparticles have made use of relatively large particles (>10 nm), hinting at a weaker non-specific interaction between the oligonucleotides and large Au nanoparticles. However, most current methods of nanoparticle synthesis are optimized to produce metal nanoparticles only within a narrow size range. We find that core-shell nanoparticles formed by the seeded growth method may be used to artificially enlarge the size of the metal particles to reduce the nonspecific binding of oligonucleotides. We demonstrate herein a core-shell assisted growth method to assemble Pt and Ru nanoparticles by DNA hybridization. This method involves firstly synthesizing approximately 16 nm core-shell Ag-Pt and 21 nm core-shell Au-Ru nanoparticles from 9.6 nm Ag seeds and 17.2 nm Au seeds respectively by the seed-mediated growth method. The core-shell nanoparticles were then functionalized by complementary thiolated oligonucleotides followed by aging in 0.2 M PBS buffer for 6 hours. The DNA hybridization induced bimetallic assembly of Pt and Ru nanoparticles could then be carried out in 0.3 M PBS buffer for 10 hours.Singapore-MIT Alliance (SMA

    Development of covalent triazine frameworks as heterogeneous catalytic supports

    Get PDF
    Covalent triazine frameworks (CTFs) are established as an emerging class of porous organic polymers with remarkable features such as large surface area and permanent porosity, high thermal and chemical stability, and convenient functionalization that promotes great potential in heterogeneous catalysis. In this article, we systematically present the structural design of CTFs as a versatile scaffold to develop heterogeneous catalysts for a variety of chemical reactions. We mainly focus on the functionalization of CTFs, including their use for incorporating and stabilization of nanoparticles and immobilization of molecular complexes onto the frameworks

    Direct Observation of Photoinduced Charge Separation in Ruthenium Complex/Ni(OH)\u3csub\u3e2\u3c/sub\u3e Nanoparticle Hybrid

    Get PDF
    Ni(OH)2 have emerged as important functional materials for solar fuel conversion because of their potential as cost-effective bifunctional catalysts for both hydrogen and oxygen evolution reactions. However, their roles as photocatalysts in the photoinduced charge separation (CS) reactions remain unexplored. In this paper, we investigate the CS dynamics of a newly designed hybrid catalyst by integrating a Ru complex with Ni(OH)2 nanoparticles (NPs). Using time resolved X-ray absorption spectroscopy (XTA), we directly observed the formation of the reduced Ni metal site (~60 ps), unambiguously demonstrating CS process in the hybrid through ultrafast electron transfer from Ru complex to Ni(OH)2 NPs. Compared to the ultrafast CS process, the charge recombination in the hybrid is ultraslow (≫50 ns). These results not only suggest the possibility of developing Ni(OH)2 as solar fuel catalysts, but also represent the first time direct observation of efficient CS in a hybrid catalyst using XTA

    Colloidal bimetallic platinum–ruthenium nanoparticles in ordered mesoporous carbon films as highly active electrocatalysts for the hydrogen evolution reaction

    Get PDF
    Hydrogen features a very high specific energy density and is therefore a promising candidate for clean fuel from renewable resources. Water electrolysis can convert electrical energy into storable and transportable hydrogen gas. Under acidic conditions, platinum is the most active and stable monometallic catalyst for the hydrogen evolution reaction (HER). Yet, platinum is rare and needs to be used efficiently. Here, we report a synthesis concept for colloidal bimetallic platinum–ruthenium and rhodium–ruthenium nanoparticles (PtRuNP, RhRuNP) and their incorporation into ordered mesoporous carbon (OMC) films. The films exhibit high surface area, good electrical conductivity and well-dispersed nanoparticles inside the mesopores. The nanoparticles retain their size, crystallinity and composition during carbonization. In the hydrogen evolution reaction (HER), PtRuNP/OMC catalyst films show up to five times higher activity per Pt than Pt/C/Nafion® and PtRu/C/Nafion® reference catalysts.TU Berlin, Open-Access-Mittel - 2020European Metrology Research Programme (EMRP), 16ENG0, Hybrid metrology for thin films in energy applications (HyMET)BMBF, 03VP05390, Nanostrukturierte Elektroden der nächsten Generation für eine energieeffiziente Produktion von Chlor - Next-Gen-ChlorBMBF, 03EK3009, Design hocheffizienter Elektrolysekatalysatore

    Probing the crossover in CO desorption from single crystal to nanoparticulate Ru model catalysts

    Get PDF
    cited By 10International audienceUsing model catalysts, we demonstrate that CO desorption from Ru surfaces can be switched from that typical of single crystal surfaces to one more characteristic of supported nanoparticles. First, the CO desorption behaviour from Ru nanoparticles supported on highly oriented pyrolytic graphite was studied. Both mass-selected and thermally evaporated nanoparticles were deposited. TPD spectra from the mass-selected nanoparticles exhibit a desorption peak located around 410 K with a broad shoulder extending from around 480 K to 600 K, while spectra obtained from thermally evaporated nanoparticles exhibit a single broad feature from ∼350 K to ∼450 K. A room temperature deposited 50 Å thick Ru film displays a characteristic nanoparticle-like spectrum with a broad desorption feature at ∼420 K and a shoulder extending from ∼450 K to ∼600 K. Subsequent annealing of this film at 900 K produced a polycrystalline morphology of flat Ru(001) terraces separated by monatomic steps. The CO desorption spectrum from this surface resembles that obtained on single crystal Ru(001) with two large desorption features located at 390 K and 450 K due to molecular desorption from terrace sites, and a much smaller peak at ∼530 K due to desorption of dissociatively adsorbed CO at step sites. In a second experiment, ion sputtering was used to create surface defects on a Ru(0 1 54) single crystal surface. A gradual shift away from the desorption spectrum typical of a Ru(001) surface towards one resembling desorption from supported Ru nanoparticles was observed with increasing sputter time. © 2011 the Owner Societies

    First-principles thermodynamic modeling of lanthanum chromate perovskites

    Get PDF
    Tendencies toward local atomic ordering in (A,A′)(B,B′)O_(3−δ) mixed composition perovskites are modeled to explore their influence on thermodynamic, transport, and electronic properties. In particular, dopants and defects within lanthanum chromate perovskites are studied under various simulated redox environments. (La_(1−x),Sr_x)(Cr_(1−y),Fe_y)O_(3−δ) (LSCF) and (La_(1−x),Sr_x)(Cr_(1−y),Ru_y)O_(3−δ) (LSCR) are modeled using a cluster expansion statistical thermodynamics method built upon a density functional theory database of structural energies. The cluster expansions are utilized in lattice Monte Carlo simulations to compute the ordering of Sr and Fe(Ru) dopant and oxygen vacancies (Vac). Reduction processes are modeled via the introduction of oxygen vacancies, effectively forcing excess electronic charge onto remaining atoms. LSCR shows increasingly extended Ru-Vac associates and short-range Ru-Ru and Ru-Vac interactions upon reduction; LSCF shows long-range Fe-Fe and Fe-Vac interaction ordering, inhibiting mobility. First principles density functional calculations suggest that Ru-Vac associates significantly decrease the activation energy of Ru-Cr swaps in reduced LSCR. These results are discussed in view of experimentally observed extrusion of metallic Ru from LSCR nanoparticles under reducing conditions at elevated temperature
    corecore