1,178,831 research outputs found

    Bipyrimidine ruthenium(II) arene complexes : structure, reactivity and cytotoxicity

    Get PDF
    The synthesis and characterization of complexes [(η6-arene)Ru(N,N′)X][PF6], where arene is para-cymene (p-cym), biphenyl (bip), ethyl benzoate (etb), hexamethylbenzene (hmb), indane (ind) or 1,2,3,4-tetrahydronaphthalene (thn), N,N′ is 2,2′-bipyrimidine (bpm) and X is Cl, Br or I, are reported, including the X-ray crystal structures of [(η6-p-cym)Ru(bpm)I][PF6], [(η6-bip)Ru(bpm)Cl][PF6], [(η6-bip)Ru(bpm)I][PF6] and [(η6-etb)Ru(bpm)Cl][PF6]. Complexes in which N,N′ is 1,10-phenanthroline (phen), 1,10-phenanthroline-5,6-dione or 4,7-diphenyl-1,10-phenanthroline (bathophen) were studied for comparison. The RuII arene complexes undergo ligand-exchange reactions in aqueous solution at 310 K; their half-lives for hydrolysis range from 14 to 715 min. Density functional theory calculations on [(η6-p-cym)Ru(bpm)Cl][PF6], [(η6-p-cym)Ru(bpm)Br][PF6], [(η6-p-cym)Ru(bpm)I][PF6], [(η6-bip)Ru(bpm)Cl][PF6], [(η6-bip)Ru(bpm)Br][PF6] and [(η6-bip)Ru(bpm)I][PF6] suggest that aquation occurs via an associative pathway and that the reaction is thermodynamically favourable when the leaving ligand is I > Br ≈ Cl. pK a* values for the aqua adducts of the complexes range from 6.9 to 7.32. A binding preference for 9-ethylguanine (9-EtG) compared with 9-ethyladenine (9-EtA) was observed for [(η6-p-cym)Ru(bpm)Cl][PF6], [(η6-hmb)Ru(bpm)Cl]+, [(η6-ind)Ru(bpm)Cl]+, [(η6-thn)Ru(bpm)Cl]+, [(η6-p-cym)Ru(phen)Cl]+ and [(η6-p-cym)Ru(bathophen)Cl]+ in aqueous solution at 310 K. The X-ray crystal structure of the guanine complex [(η6-p-cym)Ru(bpm)(9-EtG-N7)][PF6]2 shows multiple hydrogen bonding. Density functional theory calculations show that the 9-EtG adducts of all complexes are thermodynamically preferred compared with those of 9-EtA. However, the bmp complexes are inactive towards A2780 human ovarian cancer cells. Calf thymus DNA interactions for [(η6-p-cym)Ru(bpm)Cl][PF6] and [(η6-p-cym)Ru(phen)Cl][PF6] consist of weak coordinative, intercalative and monofunctional coordination. Binding to biomolecules such as glutathione may play a role in deactivating the bpm complexes

    Ruthenium and osmium carbonyl clusters incorporating stannylene and stannyl ligands

    Get PDF
    The reaction of [Ru₃ (CO)₁₂] with Ph₃SnSPh in refluxing benzene furnished the bimetallic Ru-Sn compound [Ru₃(CO)₈(μ-SPh)₂(μ3-SnPh₂)(SnPh₃)₂] 1 which consists of a SnPh₂ stannylene bonded to three Ru atoms to give a planar tetra-metal core, with two peripheral SnPh₃ ligands. The stannylene ligand forms a very short bond to one Ru atom [Sn-Ru 2.538(1) Å] and very long bonds to the other two [Sn-Ru 3.074(1) Å]. The germanium compound [Ru₃(CO)₈(μ-SPh)₂(μ₃-GePh₂)(GePh₃)₂] 2 was obtained from the reaction of [Ru₃ (CO)₁₂] with Ph₃GeSPh and has a similar structure to that of 1 as evidenced by spectroscopic data. Treatment of [Os₃(CO)₁₀(MeCN)₂] with Ph₃SnSPh in refluxing benzene yielded the bimetallic Os-Sn compound [Os₃(CO)₉(μ-SPh)(μ₃-SnPh₂)(MeCN)(ƞ¹-C₆H₅)] 3. Cluster 3 has a superficially similar planar metal core, but with a different bonding mode with respect to that of 1. The Ph₂Sn group is bonded most closely to Os(2) and Os(3) [2.7862(3) and 2.7476(3) Å respectively] with a significantly longer bond to Os(1), 2.9981(3) Å indicating a weak back-donation to the Sn. The reaction of the bridging dppm compound [Ru₃(CO)₁₀(μ-dppm)] with Ph₃SnSPh afforded [Ru₃(CO)₆(μ-dppm)(μ₃-S)(μ₃-SPh)(SnPh₃)] 5. Compound 5 contains an open triangle of Ru atoms simultaneously capped by a sulfido and a PhS ligand on opposite sides of the cluster with a dppm ligand bridging one of the Ru-Ru edges and a Ph₃Sn group occupying an axial position on the Ru atom not bridged by the dppm ligand

    Oxygen non-stoichiometry in Ru-1212 and Ru-1222 magnetosuperconductors

    Full text link
    Here we report the results of thermogravimetric (TG) analysis on the oxygen non-stoichiometry of RuSr2GdCu2O8 (Ru-1212) and RuSr2(Gd0.75Ce0.25)2Cu2O10(Ru-1222) samples. With TG annealings carried out in O2 and Ar atmospheres it was found that the oxygen content in Ru-1212 remains less affected upon various annealings, while for Ru-1222 wider-range oxygen-content tuning is possible. When heated in H2/Ar atmosphere the both phases release oxygen upon breaking down to mixtures of metals (Ru and Cu) and binary oxides (CeO2, Gd2O3, and SrO) in two distinct steps around 300 and 450 oC. This reductive decomposition reaction carried out in a thermobalance was utilized in precise oxygen content determination for these phases. It was found that the 100-atm O2-annealed Ru-1212 sample was nearly stoichiometric, while the similarly treated Ru-1222 sample was clearly oxygen deficient. X-ray absorption near-edge (XANES) spectroscopy was applied to estimate the valence of Ru in the samples. In spite of the fact that the Ru-1212 phase was shown to possess less oxygen-deficient RuO2 layer, the valence of Ru as probed with XANES was found to be lower in Ru-1212 than that in Ru-1222.Comment: 11 pages text, 4 pages Figs. To ISS 2002 YOKOHAMA for PHYSICA

    Formation and structural chemistry of the unusual cyanide-bridged dinuclear species [Ru-2(NN)(2)(CN)(7)](3-)(NN=2,2 '-bipyridine or 1,10-phenanthroline)

    Get PDF
    Crystallisation of simple cyanoruthenate complex anions [Ru(NN)(CN)(4)](2) (NN = 2,2'-bipyridine or 1,10-phenanthroline) in the presence of Lewis-acidic cations such as Ln(III) or guanidinium cations results, in addition to the expected [Ru(NN)(CN)(4)](2) salts, in the formation of small amounts of salts of the dinuclear species [Ru-2(NN)(2)(CN)(7)](3). These cyanide-bridged anions have arisen from the combination of two monomer units [Ru(NN)(CN)(4)](2) following the loss of one cyanide, presumably as HCN. The crystal structures of [Nd(H2O)(5.5)][Ru-2(bipy)(2)(CN)(7)] center dot 11H(2)O and [Pr(H2O)(6)][Ru-2(phen)(2)(CN)(7)] center dot 9H(2)O show that the cyanoruthenate anions form Ru-CN-Ln bridges to the Ln(III) cations, resulting in infinite coordination polymers consisting of fused Ru(2)Ln(2)(mu-CN)(4) squares and Ru(4)Ln(2)(mu-CN)(6) hexagons, which alternate to form a one-dimensional chain. In [CH6N3](3)[Ru-2(bipy)(2)(CN)(7)] center dot 2H(2)O in contrast the discrete complex anions are involved in an extensive network of hydrogen-bonding involving terminal cyanide ligands, water molecules, and guanidinium cations. In the [Ru-2(NN)(2)(CN)(7)](3) anions themselves the two NN ligands are approximately eclipsed, lying on the same side of the central Ru-CN-Ru axis, such that their peripheries are in close contact. Consequently, when NN = 4,4'-Bu-t(2)-2,2'-bipyridine the steric bulk of the t-butyl groups prevents the formation of the dinuclear anions, and the only product is the simple salt of the monomer, [CH6N3](2)[Ru((t)Bu(2)bipy)(CN)(4)] center dot 2H(2)O. We demonstrated by electrospray mass spectrometry that the dinuclear by-product [Ru-2(phen)(2)(CN)(7)](3) could be formed in significant amounts during the synthesis of monomeric [Ru(phen)(CN)(4)](2) if the reaction time was too long or the medium too acidic. In the solid state the luminescence properties of [Ru-2(bipy)(2)(CN)(7)](3) (as its guanidinium salt) are comparable to those of monomeric [Ru(bipy)(CN)(4)](2), with a (MLCT)-M-3 emission at 581 nm

    Spin-memory loss at Co/Ru interfaces

    Full text link
    We have determined the spin-memory-loss parameter, δCo/Ru\delta_{Co/Ru}, by measuring the transmission of spin-triplet and spin-singlet Cooper pairs across Co/Ru interfaces in Josephson junctions and by Current-Perpendicular-to-Plane Giant Magnetoresistance (CPP-GMR) techniques. The probability of spin-memory loss at the Co/Ru interface is (1exp(δCo/Ru))(1-exp(-\delta_{Co/Ru})). From the CPP-MR, we obtain δCo/Ru=0.340.02+0.04\delta_{Co/Ru} = 0.34^{+0.04}_{-0.02} that is in good agreement with δCo/Ru=0.35±0.08\delta_{Co/Ru} = 0.35 \pm 0.08 obtained from spin-triplet transmission. For spin-singlet transmission, we have δCo/Ru=0.64±0.05\delta_{Co/Ru} = 0.64 \pm 0.05 that is different from that obtained from CPP-GMR and spin-triplet transmission. The source of this difference is not understood.Comment: 9 pages, 9 figure

    Evolution of the electronic structure across the filling-control and bandwidth-control metal-insulator transitions in pyrochlore-type Ru oxides

    Full text link
    We have performed photoemission and soft x-ray absorption studies of pyrochlore-type Ru oxides, namely, the filling-control system Sm2x_{2-x}Cax_xRu2_2O7_7 and the bandwidth-control system Sm2x_{2-x}Bix_xRu2_2O7_7, which show insulator-to-metal transition with increasing Ca and Bi concentration, respectively. Core levels and the O 2pp valence band in Sm2x_{2-x}Cax_xRu2_2O7_7 show almost the same amount of monotonous upward energy shifts with Ca concentration, which indicates that the chemical potential is shifted downward due to hole doping. The Ru 4dd band in Sm2x_{2-x}Cax_xRu2_2O7_7 is also shifted toward the Fermi level (EFE_F) with hole doping and the density of states (DOS) at EFE_F increases. The core levels in Sm2x_{2-x}Bix_xRu2_2O7_7, on the other hand, do not show clear energy shifts except for the Ru 3dd core level, whose line shape change also reflects the increase of metallic screening with Bi concentration. We observe pronounced spectral weight transfer from the incoherent to the coherent parts of the Ru 4d t2gt_{2g} band with Bi concentration, which is expected for a bandwidth-control Mott-Hubbard system. The increase of the DOS at EFE_F is more abrupt in the bandwidth-control Sm2x_{2-x}Bix_xRu2_2O7_7 than in the filling-control Sm2x_{2-x}Cax_xRu2_2O7_7, in accordance with a recent theoretical prediction. Effects of charge transfer between the Bi 6spsp band and the Ru 4dd band are also discussed.Comment: 11 pages, 6 figure

    Fluorescein Redirects a Ruthenium−Octaarginine Conjugate to the Nucleus

    Get PDF
    The cellular uptake and localization of a Ru−octaarginine conjugate with and without an appended fluorescein are compared. The inherent luminescence of the Ru(II) dipyridophenazine complex allows observation of its uptake without the addition of a fluorophore. Ru−octaarginine−fluorescein stains the cytosol, nuclei, and nucleoli of HeLa cells under conditions where the Ru−octaarginine conjugate without fluorescein shows only punctate cytoplasmic labeling. At higher concentrations, however, Ru−octaarginine without the fluorescein tag does exhibit cytoplasmic, nuclear, and nucleolar staining. Attaching fluorescein to Ru−octaarginine lowers the threshold concentration required for diffuse cytoplasmic labeling and nuclear entry. Hence, the localization of the fluorophore-bound peptide cannot serve as a proxy for that of the free peptide

    Photoactivatable organometallic pyridyl ruthenium(II) arene complexes

    Get PDF
    The synthesis and characterization of a family of piano-stool RuII arene complexes of the type [(η6-arene)Ru(N,N′)(L)][PF6]2, where arene is p-cymene (p-cym), hexamethylbenzene (hmb), or indane (ind), N,N′ is 2,2′-bipyrimidine (bpm), 1,10-phenanthroline (phen), 1,10-phenanthroline-5,6-dione (phendio), or 4,7-diphenyl-1,10-phenanthroline (bathophen), and L is pyridine (Py), 4-methylpyridine (4-MePy), 4-methoxypyridine (4-MeOPy), 4,4′-bipyridine (4,4′-bpy), 4-phenylpyridine (4-PhPy), 4-benzylpyridine (4-BzPy), 1,2,4-triazole (trz), 3-acetylpyridine (3-AcPy), nicotinamide (NA), or methyl nicotinate (MN), are reported, including the X-ray crystal structures of [(η6-p-cym)Ru(bpm)(4-MePy)]2+ (2), [(η6-p-cym)Ru(bpm)(4-BzPy)]2+ (6), [(η6-p-cym)Ru(bpm)(trz)]2+ (7), [(η6-p-cym)Ru(phen)(Py)]2+ (10), and [(η6-ind)Ru(bpy)(Py)]2+ (13). These complexes can selectively photodissociate the monodentate ligand (L) when excited with UVA or white light, allowing strict control of the formation of the reactive aqua species [(η6-arene)Ru(N,N′)(OH2)]2+ that otherwise would not form in the dark. The photoproducts were characterized by UV–vis absorption and 1H NMR spectroscopy. DFT and TD-DFT calculations were employed to characterize the excited states and to obtain information on the photochemistry of the complexes. All the RuII pyridine complexes follow a relatively similar photochemical L-ligand dissociation mechanism, likely to occur from a series of 3MC triplet states with dissociative character. The photochemical process proved to be much more efficient when UVA-range irradiation was used. More strikingly, light activation was used to phototrigger binding of these potential anticancer agents with discriminating preference toward 9-ethylguanine (9-EtG) over 9-ethyladenine (9-EtA). Calf thymus (CT)-DNA binding studies showed that the irradiated complexes bind to CT-DNA, whereas the nonirradiated forms bind negligibly. Studies of CT-DNA interactions in cell-free media suggest combined weak monofunctional coordinative and intercalative binding modes. The RuII arene complexes [(η6-p-cym)Ru(bpm)(Py)]2+ (1), [(η6-p-cym)Ru(bpm)(4-MeOPy)]2+ (3), [(η6-p-cym)Ru(4,4′-bpy)]2+ (4), [(η6-hmb)Ru(bpm)(Py)]2+ (8), [(η6-ind)Ru(bpm)(Py)]2+ (9), [(η6-p-cym)Ru(phen)(Py)]2+ (10), [(η6-p-cym)Ru(bathophen)(Py)]2+ (12), [(η6-p-cym)Ru(bpm)(NA)]2+ (15), and [(η6-p-cym)Ru(bpm)(MN)]2+ (16) were cytotoxic toward A2780 human ovarian cancer cell line in the absence of photoirradiation (IC50 values in the range of 9.0–60 μM)

    Effect of B-site Dopants on Magnetic and Transport Properties of LaSrCoRuO6_6

    Full text link
    Effect of Co, Ru and Cu substitution at B and B' sites on the magnetic and transport properties of LaSrCoRuO6_6 have been investigated. All the doped compositions crystallize in the monoclinic structure in the space group P21/nP2_1/n indicating a double perovskite structure. While the magnetization and conductivity increase in Co and Ru doped compounds, antiferromagnetism is seen to strengthen in the Cu doped samples. These results are explained on the basis of a competition between linear Co-O-Ru-O-Co and perpendicular Co-O-O-Co antiferromagnetic interactions and due to formation of Ru-O-Ru ferromagnetic networks
    corecore