686 research outputs found

    NOSQL design for analytical workloads: Variability matters

    Get PDF
    Big Data has recently gained popularity and has strongly questioned relational databases as universal storage systems, especially in the presence of analytical workloads. As result, co-relational alternatives, commonly known as NOSQL (Not Only SQL) databases, are extensively used for Big Data. As the primary focus of NOSQL is on performance, NOSQL databases are directly designed at the physical level, and consequently the resulting schema is tailored to the dataset and access patterns of the problem in hand. However, we believe that NOSQL design can also benefit from traditional design approaches. In this paper we present a method to design databases for analytical workloads. Starting from the conceptual model and adopting the classical 3-phase design used for relational databases, we propose a novel design method considering the new features brought by NOSQL and encompassing relational and co-relational design altogether.Peer ReviewedPostprint (author's final draft

    SiteWit Corporation: SQL or NoSQL that is the Question

    Get PDF
    This teaching case focuses on a start-up company in the Web analytics and online advertising space, which faces a database scaling challenge. The case covers the rapidly emerging NoSQL database products that can be used to implement very large distributed databases. These are exciting times in the database marketplace, with a flock of new companies offering scalable database systems for the cloud. These products challenge the existing relational database vendors that have come to dominate the market. The case outlines four potential solutions and asks students to make a choice or suggest a different alternative

    Transactions and data management in NoSQL cloud databases

    Get PDF
    NoSQL databases have become the preferred option for storing and processing data in cloud computing as they are capable of providing high data availability, scalability and efficiency. But in order to achieve these attributes, NoSQL databases make certain trade-offs. First, NoSQL databases cannot guarantee strong consistency of data. They only guarantee a weaker consistency which is based on eventual consistency model. Second, NoSQL databases adopt a simple data model which makes it easy for data to be scaled across multiple nodes. Third, NoSQL databases do not support table joins and referential integrity which by implication, means they cannot implement complex queries. The combination of these factors implies that NoSQL databases cannot support transactions. Motivated by these crucial issues this thesis investigates into the transactions and data management in NoSQL databases. It presents a novel approach that implements transactional support for NoSQL databases in order to ensure stronger data consistency and provide appropriate level of performance. The novelty lies in the design of a Multi-Key transaction model that guarantees the standard properties of transactions in order to ensure stronger consistency and integrity of data. The model is implemented in a novel loosely-coupled architecture that separates the implementation of transactional logic from the underlying data thus ensuring transparency and abstraction in cloud and NoSQL databases. The proposed approach is validated through the development of a prototype system using real MongoDB system. An extended version of the standard Yahoo! Cloud Services Benchmark (YCSB) has been used in order to test and evaluate the proposed approach. Various experiments have been conducted and sets of results have been generated. The results show that the proposed approach meets the research objectives. It maintains stronger consistency of cloud data as well as appropriate level of reliability and performance

    Database Design and Implementation

    Get PDF
    The book of Database Design and Implementation is a comprehensive guide that provides a thorough introduction to the principles, concepts, and best practices of database design and implementation. It covers the essential topics required to design, develop, and manage a database system, including data modeling, database normalization, SQL programming, and database administration. The book is designed for students, database administrators, software developers, and anyone interested in learning how to design and implement a database system. It provides a step-by-step approach to database design and implementation, with clear explanations and practical examples. It also includes exercises and quizzes at the end of each chapter to help reinforce the concepts covered. The book begins by introducing the fundamental concepts of database systems and data modeling. It then discusses the process of database design and normalization, which is essential for creating a well-structured and efficient database system. The book also covers SQL programming, which is used for querying, updating, and managing data in a database. Additionally, it includes a comprehensive discussion on database administration, including security, backup and recovery, and performance tuning.https://orc.library.atu.edu/atu_oer/1002/thumbnail.jp

    DATA MIGRATION FROM STANDARD SQL TO NoSQL

    Get PDF
    Currently two major database management systems are in use for dealing with data, the Relational Database Management System (RDBMS) also knows as standard SQL databases and the NoSQL databases. The RDBMS databases deal with structured data and the NoSQL databases with unstructured or semi-structured data. The RDBMS databases have been popular for many years but the NoSQL type is gaining popularity with the introduction of the internet and social media. Data flow from SQL to NoSQL or vice versa is very much possible in the near future due to the growing popularity of the NoSQL databases. The goal of this thesis is to analyze the data structures of the RDBMS and the NoSQL databases and to suggest a Graphical User Interface (GUI) tool that migrates the data from SQL to NoSQL databases. The relational databases have been in use and have dominated the industry for many years. In contrast, the NoSQL databases were introduced with the increased usage of the internet, social media, and cloud computing. The traditional relational databases guarantee data integrity whereas high availability and scalability are the main advantages of the NoSQL databases. This thesis presents a comparison of these two technologies. It compares the data structure and data storing techniques of the two technologies. The SQL databases store data differently as compared to the NoSQL databases due to their specific demands. The data stored in the relational databases is highly structured and normalized in most environments whereas the data in the NoSQL databases are mostly unstructured. This difference of the data structure helps in meeting the specific demands of these two systems. The NoSQL DBs are scalable with high availability due to the simpler data model but does not guarantee data consistency at all times. On the other hand the RDBMS systems are not easily scalable and available at the same time due to the complex data model but guarantees data consistency. This thesis uses CouchDB and MySQL to represent the NoSQL and standard SQL databases respectively. The aim of the iii research in this document is to suggest a methodology for data migration from the RDBMS databases to the document-based NoSQL databases. Data migration between the RDBMS and the NoSQL systems is anticipated because both systems are currently in use by many industry leaders. This thesis presents a Graphical User Interface as a starting point that enables the data migration from the RDBMS to the NoSQL databases. MySQL and CouchDB are used as the test databases for the relational and NoSQL systems respectively. This thesis presents an architecture and methodology to achieve this objective
    corecore