5,692 research outputs found

    On Compact Routing for the Internet

    Full text link
    While there exist compact routing schemes designed for grids, trees, and Internet-like topologies that offer routing tables of sizes that scale logarithmically with the network size, we demonstrate in this paper that in view of recent results in compact routing research, such logarithmic scaling on Internet-like topologies is fundamentally impossible in the presence of topology dynamics or topology-independent (flat) addressing. We use analytic arguments to show that the number of routing control messages per topology change cannot scale better than linearly on Internet-like topologies. We also employ simulations to confirm that logarithmic routing table size scaling gets broken by topology-independent addressing, a cornerstone of popular locator-identifier split proposals aiming at improving routing scaling in the presence of network topology dynamics or host mobility. These pessimistic findings lead us to the conclusion that a fundamental re-examination of assumptions behind routing models and abstractions is needed in order to find a routing architecture that would be able to scale ``indefinitely.''Comment: This is a significantly revised, journal version of cs/050802

    Relaxed spanners for directed disk graphs

    Get PDF
    Let (V,δ)(V,\delta) be a finite metric space, where VV is a set of nn points and δ\delta is a distance function defined for these points. Assume that (V,δ)(V,\delta) has a constant doubling dimension dd and assume that each point p∈Vp\in V has a disk of radius r(p)r(p) around it. The disk graph that corresponds to VV and r(⋅)r(\cdot) is a \emph{directed} graph I(V,E,r)I(V,E,r), whose vertices are the points of VV and whose edge set includes a directed edge from pp to qq if δ(p,q)≤r(p)\delta(p,q)\leq r(p). In \cite{PeRo08} we presented an algorithm for constructing a (1+\eps)-spanner of size O(n/\eps^d \log M), where MM is the maximal radius r(p)r(p). The current paper presents two results. The first shows that the spanner of \cite{PeRo08} is essentially optimal, i.e., for metrics of constant doubling dimension it is not possible to guarantee a spanner whose size is independent of MM. The second result shows that by slightly relaxing the requirements and allowing a small perturbation of the radius assignment, considerably better spanners can be constructed. In particular, we show that if it is allowed to use edges of the disk graph I(V,E,r_{1+\eps}), where r_{1+\eps}(p) = (1+\eps)\cdot r(p) for every p∈Vp\in V, then it is possible to get a (1+\eps)-spanner of size O(n/\eps^d) for I(V,E,r)I(V,E,r). Our algorithm is simple and can be implemented efficiently

    Travelling on Graphs with Small Highway Dimension

    Get PDF
    We study the Travelling Salesperson (TSP) and the Steiner Tree problem (STP) in graphs of low highway dimension. This graph parameter was introduced by Abraham et al. [SODA 2010] as a model for transportation networks, on which TSP and STP naturally occur for various applications in logistics. It was previously shown [Feldmann et al. ICALP 2015] that these problems admit a quasi-polynomial time approximation scheme (QPTAS) on graphs of constant highway dimension. We demonstrate that a significant improvement is possible in the special case when the highway dimension is 1, for which we present a fully-polynomial time approximation scheme (FPTAS). We also prove that STP is weakly NP-hard for these restricted graphs. For TSP we show NP-hardness for graphs of highway dimension 6, which answers an open problem posed in [Feldmann et al. ICALP 2015]

    Software-based fault-tolerant routing algorithm in multidimensional networks

    Get PDF
    Massively parallel computing systems are being built with hundreds or thousands of components such as nodes, links, memories, and connectors. The failure of a component in such systems will not only reduce the computational power but also alter the network's topology. The software-based fault-tolerant routing algorithm is a popular routing to achieve fault-tolerance capability in networks. This algorithm is initially proposed only for two dimensional networks (Suh et al., 2000). Since, higher dimensional networks have been widely employed in many contemporary massively parallel systems; this paper proposes an approach to extend this routing scheme to these indispensable higher dimensional networks. Deadlock and livelock freedom and the performance of presented algorithm, have been investigated for networks with different dimensionality and various fault regions. Furthermore, performance results have been presented through simulation experiments
    • …
    corecore