1,609 research outputs found

    Chordal Decomposition in Rank Minimized Semidefinite Programs with Applications to Subspace Clustering

    Full text link
    Semidefinite programs (SDPs) often arise in relaxations of some NP-hard problems, and if the solution of the SDP obeys certain rank constraints, the relaxation will be tight. Decomposition methods based on chordal sparsity have already been applied to speed up the solution of sparse SDPs, but methods for dealing with rank constraints are underdeveloped. This paper leverages a minimum rank completion result to decompose the rank constraint on a single large matrix into multiple rank constraints on a set of smaller matrices. The re-weighted heuristic is used as a proxy for rank, and the specific form of the heuristic preserves the sparsity pattern between iterations. Implementations of rank-minimized SDPs through interior-point and first-order algorithms are discussed. The problem of subspace clustering is used to demonstrate the computational improvement of the proposed method.Comment: 6 pages, 6 figure

    Joint Centrality Distinguishes Optimal Leaders in Noisy Networks

    Full text link
    We study the performance of a network of agents tasked with tracking an external unknown signal in the presence of stochastic disturbances and under the condition that only a limited subset of agents, known as leaders, can measure the signal directly. We investigate the optimal leader selection problem for a prescribed maximum number of leaders, where the optimal leader set minimizes total system error defined as steady-state variance about the external signal. In contrast to previously established greedy algorithms for optimal leader selection, our results rely on an expression of total system error in terms of properties of the underlying network graph. We demonstrate that the performance of any given set of leaders depends on their influence as determined by a new graph measure of centrality of a set. We define the joint  centralityjoint \; centrality of a set of nodes in a network graph such that a leader set with maximal joint centrality is an optimal leader set. In the case of a single leader, we prove that the optimal leader is the node with maximal information centrality. In the case of multiple leaders, we show that the nodes in the optimal leader set balance high information centrality with a coverage of the graph. For special cases of graphs, we solve explicitly for optimal leader sets. We illustrate with examples.Comment: Conditionally accepted to IEEE TCN

    Approximating Non-Uniform Sparsest Cut via Generalized Spectra

    Full text link
    We give an approximation algorithm for non-uniform sparsest cut with the following guarantee: For any ϵ,δ∈(0,1)\epsilon,\delta \in (0,1), given cost and demand graphs with edge weights C,DC, D respectively, we can find a set T⊆VT\subseteq V with C(T,V∖T)D(T,V∖T)\frac{C(T,V\setminus T)}{D(T,V\setminus T)} at most 1+ϵδ\frac{1+\epsilon}{\delta} times the optimal non-uniform sparsest cut value, in time 2^{r/(\delta\epsilon)}\poly(n) provided λr≥Φ∗/(1−δ)\lambda_r \ge \Phi^*/(1-\delta). Here λr\lambda_r is the rr'th smallest generalized eigenvalue of the Laplacian matrices of cost and demand graphs; C(T,V∖T)C(T,V\setminus T) (resp. D(T,V∖T)D(T,V\setminus T)) is the weight of edges crossing the (T,V∖T)(T,V\setminus T) cut in cost (resp. demand) graph and Φ∗\Phi^* is the sparsity of the optimal cut. In words, we show that the non-uniform sparsest cut problem is easy when the generalized spectrum grows moderately fast. To the best of our knowledge, there were no results based on higher order spectra for non-uniform sparsest cut prior to this work. Even for uniform sparsest cut, the quantitative aspects of our result are somewhat stronger than previous methods. Similar results hold for other expansion measures like edge expansion, normalized cut, and conductance, with the rr'th smallest eigenvalue of the normalized Laplacian playing the role of λr\lambda_r in the latter two cases. Our proof is based on an l1-embedding of vectors from a semi-definite program from the Lasserre hierarchy. The embedded vectors are then rounded to a cut using standard threshold rounding. We hope that the ideas connecting ℓ1\ell_1-embeddings to Lasserre SDPs will find other applications. Another aspect of the analysis is the adaptation of the column selection paradigm from our earlier work on rounding Lasserre SDPs [GS11] to pick a set of edges rather than vertices. This feature is important in order to extend the algorithms to non-uniform sparsest cut.Comment: 16 page
    • …
    corecore