502,639 research outputs found

    Guiding-center solitons in rotating potentials

    Full text link
    We demonstrate that rotating quasi-one-dimensional potentials, periodic or parabolic, support solitons in settings where they are otherwise impossible. Ground-state and vortex solitons are found in defocusing media, if the rotation frequency exceeds a critical value. The revolving periodic potentials exhibit the strongest stabilization capacity at a finite optimum value of their strength, while the rotating parabolic trap features a very sharp transition to stability with the increase of rotation frequency.Comment: 16 pages, 6 figures, to appear in Physical Review

    Thermodynamical Properties of a Rotating Ideal Bose Gas

    Full text link
    In a recent experiment, a Bose-Einstein condensate was trapped in an anharmonic potential which is well approximated by a harmonic and a quartic part. The condensate was set into such a fast rotation that the centrifugal force in the corotating frame overcompensates the harmonic part in the plane perpendicular to the rotation axis. Thus, the resulting trap potential became Mexican-hat shaped. We present an analysis for an ideal Bose gas which is confined in such an anharmonic rotating trap within a semiclassical approximation where we calculate the critical temperature, the condensate fraction, and the heat capacity. In particular, we examine in detail how these thermodynamical quantities depend on the rotation frequency.Comment: Author Information under http://www.theo-phys.uni-essen.de/tp/ags/pelster_dir

    A Novel Power Allocation Scheme for Two-User GMAC with Finite Input Constellations

    Full text link
    Constellation Constrained (CC) capacity regions of two-user Gaussian Multiple Access Channels (GMAC) have been recently reported, wherein an appropriate angle of rotation between the constellations of the two users is shown to enlarge the CC capacity region. We refer to such a scheme as the Constellation Rotation (CR) scheme. In this paper, we propose a novel scheme called the Constellation Power Allocation (CPA) scheme, wherein the instantaneous transmit power of the two users are varied by maintaining their average power constraints. We show that the CPA scheme offers CC sum capacities equal (at low SNR values) or close (at high SNR values) to those offered by the CR scheme with reduced decoding complexity for QAM constellations. We study the robustness of the CPA scheme for random phase offsets in the channel and unequal average power constraints for the two users. With random phase offsets in the channel, we show that the CC sum capacity offered by the CPA scheme is more than the CR scheme at high SNR values. With unequal average power constraints, we show that the CPA scheme provides maximum gain when the power levels are close, and the advantage diminishes with the increase in the power difference.Comment: To appear in IEEE Transactions on Wireless Communications, 10 pages and 7 figure

    Land cover mapping at very high resolution with rotation equivariant CNNs: towards small yet accurate models

    Full text link
    In remote sensing images, the absolute orientation of objects is arbitrary. Depending on an object's orientation and on a sensor's flight path, objects of the same semantic class can be observed in different orientations in the same image. Equivariance to rotation, in this context understood as responding with a rotated semantic label map when subject to a rotation of the input image, is therefore a very desirable feature, in particular for high capacity models, such as Convolutional Neural Networks (CNNs). If rotation equivariance is encoded in the network, the model is confronted with a simpler task and does not need to learn specific (and redundant) weights to address rotated versions of the same object class. In this work we propose a CNN architecture called Rotation Equivariant Vector Field Network (RotEqNet) to encode rotation equivariance in the network itself. By using rotating convolutions as building blocks and passing only the the values corresponding to the maximally activating orientation throughout the network in the form of orientation encoding vector fields, RotEqNet treats rotated versions of the same object with the same filter bank and therefore achieves state-of-the-art performances even when using very small architectures trained from scratch. We test RotEqNet in two challenging sub-decimeter resolution semantic labeling problems, and show that we can perform better than a standard CNN while requiring one order of magnitude less parameters

    Two-User Gaussian Interference Channel with Finite Constellation Input and FDMA

    Full text link
    In the two-user Gaussian Strong Interference Channel (GSIC) with finite constellation inputs, it is known that relative rotation between the constellations of the two users enlarges the Constellation Constrained (CC) capacity region. In this paper, a metric for finding the approximate angle of rotation (with negligibly small error) to maximally enlarge the CC capacity for the two-user GSIC is presented. In the case of Gaussian input alphabets with equal powers for both the users and the modulus of both the cross-channel gains being equal to unity, it is known that the FDMA rate curve touches the capacity curve of the GSIC. It is shown that, with unequal powers for both the users also, when the modulus of one of the cross-channel gains being equal to one and the modulus of the other cross-channel gain being greater than or equal to one, the FDMA rate curve touches the capacity curve of the GSIC. On the contrary, it is shown that, under finite constellation inputs, with both the users using the same constellation, the FDMA rate curve strictly lies within (never touches) the enlarged CC capacity region throughout the strong-interference regime. This means that using FDMA it is impossible to go close to the CC capacity. It is well known that for the Gaussian input alphabets, the FDMA inner-bound, at the optimum sum-rate point, is always better than the simultaneous-decoding inner-bound throughout the weak-interference regime. For a portion of the weak interference regime, it is shown that with identical finite constellation inputs for both the users, the simultaneous-decoding inner-bound, enlarged by relative rotation between the constellations, is strictly better than the FDMA inner-bound.Comment: 12 pages, 10 figure

    The investigation of speed on idling power of a drive of cutting machine Unimat 23 EL

    Get PDF
    Experimental values of capacity at idling of a quadrilateral milling machine Unimat 23 EL cutting drive are defined at various tool rotation speed and various tool types. It is experimentally established that dependence of cutting drive idling capacity on tool rotation speed has curvilinear character, and dependence of cutting drive idling capacity on tool rotation speed square is close to the linear. It contradicts the theoretical data received by a way of calculations by a technique for metalcutting machines. Accordingly, the idling capacity calculating technique is inapplicable to woodcutting machines not only owing to big divergence of calculated and experimental values, but also because of character discrepancy of experimental and settlement dependences

    Heat-Capacity Measurements of Energy-Gap Nodes of the Heavy-Fermion Superconductor CeIrIn5 Deep inside the Pressure-Dependent Dome Structure of its Superconducting Phase Diagram

    Full text link
    We use heat capacity measurements as a function of field rotation to identify the nodal gap structure of CeIrIn5 at pressures to 2.05 GPa, deep inside its superconducting dome. A four-fold oscillation in the heat capacity at 0.3 K is observed for all pressures but with its sign reversed between 1.50 and 0.90 GPa. On the basis of recent theoretical models for the field-angle dependent specific heat, all data, including the sign reversal, imply a d{x^2-y^2} order parameter with nodes along [110], which constrains theoretical models of the pairing mechanism in CeIrIn5.Comment: To appear in Phys. Rev. Let
    corecore