170,567 research outputs found

    Low-Temperature Linear Thermal Rectifiers Based on Coriolis forces

    Full text link
    We demonstrate that a three-terminal harmonic symmetric chain in the presence of a Coriolis force, produced by a rotating platform which is used to place the chain, can produce thermal rectification. The direction of heat flow is reconfigurable and controlled by the angular velocity Ω\Omega of the rotating platform. A simple three terminal triangular lattice is used to demonstrate the proposed principle

    A Concept of Linear Thermal Circulator Based on Coriolis forces

    Full text link
    We show that the presence of a Coriolis force in a rotating linear lattice imposes a non-reciprocal propagation of the phononic heat carriers. Using this effect we propose the concept of Coriolis linear thermal circulator which can control the circulation of a heat current. A simple model of three coupled harmonic masses on a rotating platform allow us to demonstrate giant circulating rectification effects for moderate values of the angular velocities of the platform

    Fluid slip ring transfers coolant to rotating equipment

    Get PDF
    Rotating fluid coupler, consisting of rotor and housing made of aluminum, that is concentric with electrical slip-ring assembly, transfers cooling fluid to instrumentation undergoing environmental tests on rotating platform. Rotating fluid coupler permits unlimited platform revolutions and eliminates danger of lines being pulled loose from supplies

    Time on a Rotating Platform

    Get PDF
    Traditional clock synchronisation on a rotating platform is shown to be incompatible with the experimentally established transformation of time. The latter transformation leads directly to solve this problem through noninvariant one-way speed of light. The conventionality of some features of relativity theory allows full compatibility with existing experimental evidence.Comment: 12 pages, Latex, no figure. Copies available at [email protected] accepted for publication in Found. Phys. Let

    The Relative Space: Space Measurements on a Rotating Platform

    Full text link
    We introduce here the concept of relative space, an extended 3-space which is recognized as the only space having an operational meaning in the study of the space geometry of a rotating disk. Accordingly, we illustrate how space measurements are performed in the relative space, and we show that an old-aged puzzling problem, that is the Ehrenfest's paradox, is explained in this purely relativistic context. Furthermore, we illustrate the kinematical origin of the tangential dilation which is responsible for the solution of the Ehrenfest's paradox.Comment: 14 pages, 2 EPS figures, LaTeX, to appear in the European Journal of Physic

    Measuring the shape. Performance evaluation of a photogrammetry improvement applied to the Neanderthal skull Saccopastore 1

    Get PDF
    Several digital technologies are nowadays developed and applied to the study of the human fossil record. Here, we present a low-cost hardware implementation of the digital acquisition via photogrammetry, applied to a specimen of paleoanthropological interest: the Neanderthal skull Saccopastore 1. Such implementation has the purpose to semi-automatize the procedures of digital acquisition, by the introduction of an automatically rotating platform users can easily build on their own with minimum costs. We provide all the technical specifications, mostly based on the Arduino UNO™ microcontroller technology, and evaluate the performance and the resolution of the acquisition by comparing it with the CT-scan of the same specimen through the calculation of their shape differences. In our opinion, the replication of the automatic rotating platform, described in this work, may contribute to the improvement of the digital acquisition processes and may represent, in addition, a useful and affordable tool for both research and dissemination

    Modulation of CMB polarization with a warm rapidly-rotating half-wave plate on the Atacama B-Mode Search (ABS) instrument

    Full text link
    We evaluate the modulation of Cosmic Microwave Background (CMB) polarization using a rapidly-rotating, half-wave plate (HWP) on the Atacama B-Mode Search (ABS). After demodulating the time-ordered-data (TOD), we find a significant reduction of atmospheric fluctuations. The demodulated TOD is stable on time scales of 500-1000 seconds, corresponding to frequencies of 1-2 mHz. This facilitates recovery of cosmological information at large angular scales, which are typically available only from balloon-borne or satellite experiments. This technique also achieves a sensitive measurement of celestial polarization without differencing the TOD of paired detectors sensitive to two orthogonal linear polarizations. This is the first demonstration of the ability to remove atmospheric contamination at these levels from a ground-based platform using a rapidly-rotating HWP.Comment: 8 pages, 8 figures, Published in RSI under the title "Modulation of cosmic microwave background polarization with a warm rapidly rotating half-wave plate on the Atacama B-Mode Search instrument.

    Shear Force Fiber Spinning: Process Parameter and Polymer Solution Property Considerations

    Get PDF
    For application of polymer nanofibers (e.g., sensors, and scaffolds to study cell behavior) it is important to control the spatial orientation of the fibers. We compare the ability to align and pattern fibers using shear force fiber spinning, i.e. contacting a drop of polymer solution with a rotating collector to mechanically draw a fiber, with electrospinning onto a rotating drum. Using polystyrene as a model system, we observe that the fiber spacing using shear force fiber spinning was more uniform than electrospinning with the rotating drum with relative standard deviations of 18% and 39%, respectively. Importantly, the approaches are complementary as the fiber spacing achieved using electrospinning with the rotating drum was ~10 microns while fiber spacing achieved using shear force fiber spinning was ~250 microns. To expand to additional polymer systems, we use polymer entanglement and capillary number. Solution properties that favor large capillary numbers (\u3e50) prevent droplet breakup to facilitate fiber formation. Draw-down ratio was useful for determining appropriate process conditions (flow rate, rotational speed of the collector) to achieve continuous formation of fibers. These rules of thumb for considering the polymer solution properties and process parameters are expected to expand use of this platform for creating hierarchical structures of multiple fiber layers for cell scaffolds and additional applications

    Nutation damping in a dual-spin spacecraft

    Get PDF
    A dual-spin spacecraft having a momentum wheel spinning relative to a platform to provide bias momentum utilizes cross products of inertia (POI) existing in the platform between the spinning axis and the transverse axes to achieve nutation damping. When the platform is rotating or is displaced from a reference the cross products of inertia are also rotating or are displaced causing thereby degradation of the optimum nutation damping time constant. Two or more phase shifting networks are provided to be sequentially coupled into a control loop to shift nutation signals to effect optimum nutation damping at selected positions of the rotating or displaced platform without substantial nutation damping time constant degradation
    corecore