34,498 research outputs found

    Striga seed-germination activity of root exudates and compounds present in stems of Striga host and nonhost (trap crop) plants is reduced due to root colonization by arbuscular mycorrhizal fungi.

    Get PDF
    Root colonization by arbuscular mycorrhizal (AM) fungi reduces stimulation of seed germination of the plant parasite Striga (Orobanchaceae). This reduction can affect not only host plants for Striga, resulting in a lower parasite incidence, but also false hosts or trap crops, which induce suicidal Striga seed germination, thereby diminishing their effectiveness. In order to better understand these AM-induced effects, we tested the influence of root colonization by different AM fungi on the seed-germination activity of root exudates of the Striga hermonthica nonhost plants cowpea and cotton on S. hermonthica. We also tested the effect of AM fungi on the seed-germination activity of the Striga gesnerioides host plant cowpea on S. gesnerioides. Moreover, we studied whether mycorrhization affects the transport of seed-germination activity to above-ground plant parts. Mycorrhization not only resulted in a lower seed germination of S. gesnerioides in the presence of root exudates of the S. gesnerioides host cowpea but also seed germination of S. hermonthica was also lower in the presence of root exudates of the S. hermonthica nonhosts cowpea and cotton. Downregulation of the Striga seed-germination activity occurs not only in root exudates upon root colonization by different AM fungi but also in the compounds produced by stems. The lowered seed-germination activity does not appear to depend on the presence of seed germination inhibitors in the root exudates of mycorrhizal plants. The implication for Striga control in the field is discusse

    В портфеле редакции

    Get PDF
    WOS:000346545800018International audienceThe presence of plants induces strong accelerations in soil organic matter (SOM) mineralization by stimulating soil microbial activity a phenomenon known as the rhizosphere priming effect (RPE). The RPE could be induced by several mechanisms including root exudates, arbuscular mycorrhizal fungi (AMF) and root litter. However the contribution of each of these to rhizosphere priming is unknown due to the complexity involved in studying rhizospheric processes. In order to determine the role of each of these mechanisms, we incubated soils enclosed in nylon meshes that were permeable to exudates, or exudates & AMF or exudates, AMP and roots under three grassland plant species grown on sand. Plants were continuously labeled with C-13 depleted CO2 that allowed distinguishing plant-derived CO2 from soil-derived CO2. We show that root exudation was the main way by which plants induced RPE (58-96% of total RPE) followed by root litter. AMP did not contribute to rhizosphere priming under the two species that were significantly colonized by them i.e. Poa trivialis and Trifolium repens. Root exudates and root litter differed with respect to their mechanism of inducing RPE. Exudates induced RPE without increasing microbial biomass whereas root litter increased microbial biomass and raised the RPE mediating saprophytic fungi. The RPE efficiency (RPE/unit plant-C assimilated into microbes) was 3-7 times higher for exudates than for root litter. This efficiency of exudates is explained by a microbial allocation of fresh carbon to mineralization activity rather than to growth. These results suggest that root exudation is the main way by which plants stimulated mineralization of soil organic matter. Moreover, the plants through their exudates not only provide energy to soil microorganisms but also seem to control the way the energy is used in order to maximize soil organic matter mineralization and drive their own nutrient supply. (C) 2014 Elsevier Ltd. All rights reserved

    Root exudates from citrus plants subjected to abiotic stress conditions have a positive effect on rhizobacteria

    Get PDF
    Plants are constantly releasing root exudates to the rhizosphere. These compounds are responsible for different (positive or negative) interactions with other organisms, including plants, fungi or bacteria. In this work, the effect of root exudates obtained from in vitro cultured citrus plants on two rhizobacteria (Pseudomonas putida KT2440 and Novosphingobium sp. HR1a) was evaluated. Root exudates were obtained from two citrus genotypes differing in their sensitivity to salt and heat stress and differentially affected the growth of both rhizobacteria. Root exudates from salt-stressed plants of C. macrophylla (salt tolerant) induced an increase in bacterial growth higher than that obtained from Carrizo citrange exudates (salt sensitive). Root exudates from heat-stressed plants also had a positive effect on bacterial growth, which was more evident in the heat-sensitive C. macrophylla. These results reveal that the growth of these rhizobacteria can be modulated through citrus root exudates and can change depending on both the stress conditions as well as the genotype. Biosensors P. putida KT2442 (pMIS5) and Novosphingobium sp. HR1a (pPAH) were used to test the presence of proline and salicylates in root exudates by measuring β-galactosidase activity. This activity increased in the presence of root exudates obtained from stressed plants to a higher extent in the case of exudates obtained from the genotype resistant to each particular stress, indicating that those root exudates contain larger quantities of proline and salicylates, as it has been described previously. Our data reveals that both P. putida KT2442 (pMIS5) and Novosphingobium sp. HR1a (pPAH), could be used as biosensors of plant stress

    A review of the influence of root-associating fungi and root exudates on the success of invasive plants

    Get PDF
    Plant-fungal interactions are essential for understanding the distribution and abundance of plants species. Recently, arbuscular mycorrhizal fungal (AMF) partners of non-indigenous invasive plants have been hypothesized to be a critical factor influencing the invasion processes. AMF are known to improve nutrient and moisture uptake, as well as disrupt parasitic and pathogenic microbes in the host plant. Such benefits may enable invaders to establish significant and persistent populations in environments previously dominated by natives. Coupling these findings with studies on invader pathogen-disrupting root exudates is not well documented in the literature describing plant invasion strategies. The interaction effects of altered AMF associations and the impact of invader root exudates would be more relevant than understanding the AMF dynamics or the phytochemistry of successful invaders in isolation, particularly given that AMF and root exudates can have a similar role in pathogen control but function quite differently. One means to achieve this goal is to assess these strategies concurrently by characterizing both the general (mostly pathogens or commensals) and AM-specific fungal colonization patterns found in field collected root samples of successful invaders, native plants growing within dense patches of invaders, and native plants growing separately from invaders. In this review I examine the emerging evidence of the ways in which AMF-plant interactions and the production of defensive root exudates provide pathways to invasive plant establishment and expansion, and conclude that interaction studies must be pursued to achieve a more comprehensive understanding of successful plant invasion

    Rhizosphere-scale quantification of hydraulic and mechanical properties of soil impacted by root and seed exudates

    Get PDF
    Using rhizosphere-scale physical measurements we test the hypothesis that plant exudates gel together soil particles and on drying they enhance soil water repellency. Barley and maize root exudates were compared with chia seed exudate, a commonly used root exudate analogue. Sandy loam and clay loam soils were treated with root exudates at 0.46 and 4.6 mg exudate g-1 dry soil, and chia seed exudate at 0.046, 0.46, 0.92, 2.3 and 4.6 mg exudate g-1 dry soil. Soil hardness and modulus of elasticity were measured at -10 kPa matric potential using a 3 mm diameter spherical indenter. Water sorptivity and repellency index of air-dry soil were measured using a miniaturized infiltrometer device with a 1 mm tip radius. Soil hardness increased by 28% for barley root exudate, 62% for maize root exudate, and 86% for chia seed exudate at 4.6 mg g-1 concentration for sandy loam soil. For a clay loam soil, root exudates did not affect soil hardness, whereas chia seed exudate increased soil hardness by 48% at 4.6 mg g-1concentration. Soil water repellency increased by 48% for chia seed exudate and 23% for maize root exudate, but not for barley root exudate at 4.6 mg g-1 concentration for sandy loam soil. For clay loam soil, chia seed exudate increased water repellency by 45%, whereas root exudates did not affect water repellency at 4.6 mg g-1concentration. Water sorptivity and repellency were both correlated with hardness, presumably due to the combined influence of exudates on hydrological and mechanical properties of soils

    Influence of root exudate carbon compounds of three rice genotypes on rhizosphere and endophytic diazotrophs

    Get PDF
    Root exudates play an important role in microbial colonization of the rhizosphere. An in vitro experiment was conducted to study the root exudate sugars and production of amino acids of three different rice (Oryza sativa) genotypes, as well as the influence of these compounds on Rhizobium sp. (Sb 16) and Corynebacterium sp. (Sb26) colonization. Using HPLC, a total of 7 carbohydrate sugars and 16 amino acids were identified from the Mahsuri, Mayang Segumpal and MR219 rice root exudates. A significant (p<0.05) relationship was observed between diazotrophic population growth and root exudates sugar and amino acid consumption of the three rice varieties. Higher bacterial population was found in the plant rhizosphere, as compared to the endosphere. Rhizobium sp. consumed more sugar and produced higher rhizosphere population as compared to Corynebacterium sp. The Rhizobium sp. consumed 100% of mannose, xylose, arabinose and sucrose in the root exudates of three rice genotypes. The differences in sugar consumption by Corynebacterium sp. were observed between the rice varieties. Corynebacterium sp. consumed 100% mannose, xylose and fructose in Mahsuri rice, 100% xylose and arabinose in Mayang Segumpal and 100% arabinose and sucrose in MR219 variety. The identification of the preferred carbon sources by the diazotrophs and the selection of genotypes which produce these compounds may increase the root colonization and subsequently N fixation in the rice plants

    Geobacter, Anaeromyxobacter and Anaerolineae populations are enriched on anodes of root exudate-driven microbial fuel cells in rice field soil

    Get PDF
    Plant-based sediment microbial fuel cells (PMFCs) couple the oxidation of root exudates in living rice plants to current production. We analysed the composition of the microbial community on anodes from PMFC with natural rice field soil as substratum for rice by analysing 16S rRNA as an indicator of microbial activity and diversity. Terminal restriction fragment length polymorphism (TRFLP) analysis indicated that the active bacterial community on anodes from PMFCs differed strongly compared with controls. Moreover, clones related to Deltaproteobacteria and Chloroflexi were highly abundant (49% and 21%, respectively) on PMFCs anodes. Geobacter (19%), Anaeromyxobacter (15%) and Anaerolineae (17%) populations were predominant on anodes with natural rice field soil and differed strongly from those previously detected with potting soil. In open circuit (OC) control PMFCs, not allowing electron transfer, Deltaproteobacteria (33%), Betaproteobacteria (20%), Chloroflexi (12%), Alphaproteobacteria (10%) and Firmicutes (10%) were detected. The presence of an electron accepting anode also had a strong influence on methanogenic archaea. Hydrogenotrophic methanogens were more active on PMFC (21%) than on OC controls (10%), whereas acetoclastic Methanosaetaceae were more active on OC controls (31%) compared with PMFCs (9%). In conclusion, electron accepting anodes and rice root exudates selected for distinct potential anode-reducing microbial populations in rice soil inoculated PMFC

    Bio-compartmental in vitro system for Glomus mosseae and Ralstonia solanacearum interaction.

    Get PDF
    The life cycle of arbuscular mycorrhizal fungi (AMF) is initiated by spore germination. The interaction between Glomus mosseae and Ralstonia solanacearum was achieved by following the bio-compartmental in vitro system. The system was modified to be useful for different microbes with different types of medium. Mycorrhizal fungi spores were germinated using water agar, nutrient agar and soil media, while casamino acid-peptone-glucose (CPG) media was used for R. solanacearum.all medium. All medium were mixed with different volumes of tomato and corn root exudates. The hyphal length of G. mosseae greatly affected by the exudates particularly, mycorrhizal tomato root exudates (MTRE) and mycorrhizal corn root exudates (MCRE). The growth of R. solanacearum was suppressed due to G. mosseae spores germination which can produce different volatile and non volatiles substances. The aim of this experiment was to investigate the influence of root exudates volatiles on R. solanacearum and the hyphal of G. mosseae growth under laboratory conditions using a new modified technique

    A metabolomic approach to study the rhizodeposition in the tritrophic interaction: tomato, Pochonia chlamydosporia and Meloidogyne javanica

    Get PDF
    A combined chemometrics-metabolomics approach [excitation–emission matrix (EEM) fluorescence spectroscopy, nuclear magnetic resonance (NMR) and high performance liquid chromatography–mass spectrometry (HPLC–MS)] was used to analyse the rhizodeposition of the tritrophic system: tomato, the plant-parasitic nematode Meloidogyne javanica and the nematode-egg parasitic fungus Pochonia chlamydosporia. Exudates from M. javanica roots were sampled at root penetration (early) and gall development (late). EMM indicated that late root exudates from M. javanica treatments contained more aromatic amino acid compounds than the rest (control, P. chlamydosporia or P. chlamydosporia and M. javanica). 1H NMR showed that organic acids (acetate, lactate, malate, succinate and formic acid) and one unassigned aromatic compound (peak no. 22) were the most relevant metabolites in root exudates. Robust principal component analysis (PCA) grouped early exudates for nematode (PC1) or fungus presence (PC3). PCA found (PC1, 73.31 %) increased acetate and reduced lactate and an unassigned peak no. 22 characteristic of M. javanica root exudates resulting from nematode invasion and feeding. An increase of peak no. 22 (PC3, 4.82 %) characteristic of P. chlamydosporia exudates could be a plant “primer” defence. In late ones in PC3 (8.73 %) the presence of the nematode grouped the samples. HPLC–MS determined rhizosphere fingerprints of 16 (early) and 25 (late exudates) m/z signals, respectively. Late signals were exclusive from M. javanica exudates confirming EEM and 1H NMR results. A 235 m/z signal reduced in M. javanica root exudates (early and late) could be a repressed plant defense. This metabolomic approach and other rhizosphere -omics studies could help to improve plant growth and reduce nematode damage sustainably.This research was funded by the Spanish Ministry of Science and Innovation Grants AGL 2008-00716/AGR, AGL 2011-29297 and with a grant from the University of Alicante to N. Escudero (UAFPU2011)

    Plant exudates may stabilize or weaken soil depending on species, origin and time

    Get PDF
    We hypothesized that plant exudates could either gel or disperse soil depending on their chemical characteristics. Barley (Hordeum vulgare L. cv. Optic) and maize (Zea mays L.cv. Freya) root exudates were collected using an aerated hydroponic method and compared to chia (Salvia hispanica L.) seed exudate, a commonly used root exudate analogue. Sandy loam soil passed through a 500-μm mesh was treated with each exudate at a concentrationof 4.6 mg exudate g-1 dry soil. Two sets of soil samples were prepared, One set of treated soil samples was maintained at 4oC to suppress microbial processes. To characterize the effect of decomposition, the second set of samples was incubated at 16C for 2 weeks at – 30 kPa matric potential. Gas chromatography–mass spectrometry (GC–MS) analysis of the exudates found that barley had the largest organic acid content and chia the largest content of sugars (polysaccharide-derived or free), and maize was in between barley and chia. Yield stress of amended soil samples was measured by an oscillatory strain sweep test with a cone plate rheometer. When microbial decomposition was suppressed at 4oC, yield stress increased 20-fold for chia seed exudate and two-fold for maize root exudate compared to the control, whereas for barley root exudate it decreased to half. The yield stress after 2 weeks of incubation compared to soil with suppressed microbial decomposition increased by 85% for barley root exudate, but for chia and maize it decreased to by 87% and 54%, respectively. Barley root exudation might therefore disperse soil and this could facilitate nutrient release. The maize root and chia seed exudates gelled soil, which could create a more stable soil structure around roots or seeds
    corecore