70 research outputs found

    Elliptic rook and file numbers

    Get PDF
    Utilizing elliptic weights, we construct an elliptic analogue of rook numbers for Ferrers boards. Our elliptic rook numbers generalize Garsia and Remmel's q-rook numbers by two additional independent parameters a and b, and a nome p. These are shown to satisfy an elliptic extension of a factorization theorem which in the classical case was established by Goldman, Joichi and White and later was extended to the q-case by Garsia and Remmel. We obtain similar results for our elliptic analogues of Garsia and Remmel's q-file numbers for skyline boards. We also provide an elliptic extension of the j-attacking model introduced by Remmel and Wachs. Various applications of our results include elliptic analogues of (generalized) Stirling numbers of the first and second kind, Lah numbers, Abel numbers, and r-restricted versions thereof.Comment: 45 pages; 3rd version shortened (elliptic rook theory for matchings has been taken out to keep the length of this paper reasonable

    Bruhat intervals as rooks on skew Ferrers boards

    Get PDF
    We characterise the permutations pi such that the elements in the closed lower Bruhat interval [id,pi] of the symmetric group correspond to non-taking rook configurations on a skew Ferrers board. It turns out that these are exactly the permutations pi such that [id,pi] corresponds to a flag manifold defined by inclusions, studied by Gasharov and Reiner. Our characterisation connects the Poincare polynomials (rank-generating function) of Bruhat intervals with q-rook polynomials, and we are able to compute the Poincare polynomial of some particularly interesting intervals in the finite Weyl groups A_n and B_n. The expressions involve q-Stirling numbers of the second kind. As a by-product of our method, we present a new Stirling number identity connected to both Bruhat intervals and the poly-Bernoulli numbers defined by Kaneko.Comment: 16 pages, 9 figure

    Partitions of Matrix Spaces With an Application to qq-Rook Polynomials

    Full text link
    We study the row-space partition and the pivot partition on the matrix space Fqn×m\mathbb{F}_q^{n \times m}. We show that both these partitions are reflexive and that the row-space partition is self-dual. Moreover, using various combinatorial methods, we explicitly compute the Krawtchouk coefficients associated with these partitions. This establishes MacWilliams-type identities for the row-space and pivot enumerators of linear rank-metric codes. We then generalize the Singleton-like bound for rank-metric codes, and introduce two new concepts of code extremality. Both of them generalize the notion of MRD codes and are preserved by trace-duality. Moreover, codes that are extremal according to either notion satisfy strong rigidity properties analogous to those of MRD codes. As an application of our results to combinatorics, we give closed formulas for the qq-rook polynomials associated with Ferrers diagram boards. Moreover, we exploit connections between matrices over finite fields and rook placements to prove that the number of matrices of rank rr over Fq\mathbb{F}_q supported on a Ferrers diagram is a polynomial in qq, whose degree is strictly increasing in rr. Finally, we investigate the natural analogues of the MacWilliams Extension Theorem for the rank, the row-space, and the pivot partitions
    • …
    corecore