40 research outputs found

    Generalized permutation patterns - a short survey

    Get PDF
    An occurrence of a classical pattern p in a permutation Ļ€ is a subsequence of Ļ€ whose letters are in the same relative order (of size) as those in p. In an occurrence of a generalized pattern, some letters of that subsequence may be required to be adjacent in the permutation. Subsets of permutations characterized by the avoidanceā€”or the prescribed number of occurrencesā€” of generalized patterns exhibit connections to an enormous variety of other combinatorial structures, some of them apparently deep. We give a short overview of the state of the art for generalized patterns

    Heisenberg-Weyl algebra revisited: Combinatorics of words and paths

    Full text link
    The Heisenberg-Weyl algebra, which underlies virtually all physical representations of Quantum Theory, is considered from the combinatorial point of view. We provide a concrete model of the algebra in terms of paths on a lattice with some decomposition rules. We also discuss the rook problem on the associated Ferrers board; this is related to the calculus in the normally ordered basis. From this starting point we explore a combinatorial underpinning of the Heisenberg-Weyl algebra, which offers novel perspectives, methods and applications.Comment: 5 pages, 3 figure

    Enumeration of Stack-Sorting Preimages via a Decomposition Lemma

    Full text link
    We give three applications of a recently-proven "Decomposition Lemma," which allows one to count preimages of certain sets of permutations under West's stack-sorting map ss. We first enumerate the permutation class sāˆ’1(Av(231,321))=Av(2341,3241,45231)s^{-1}(\text{Av}(231,321))=\text{Av}(2341,3241,45231), finding a new example of an unbalanced Wilf equivalence. This result is equivalent to the enumeration of permutations sortable by Bāˆ˜s{\bf B}\circ s, where B{\bf B} is the bubble sort map. We then prove that the sets sāˆ’1(Av(231,312))s^{-1}(\text{Av}(231,312)), sāˆ’1(Av(132,231))=Av(2341,1342,32ā€¾41,31ā€¾42)s^{-1}(\text{Av}(132,231))=\text{Av}(2341,1342,\underline{32}41,\underline{31}42), and sāˆ’1(Av(132,312))=Av(1342,3142,3412,3421ā€¾)s^{-1}(\text{Av}(132,312))=\text{Av}(1342,3142,3412,34\underline{21}) are counted by the so-called "Boolean-Catalan numbers," settling a conjecture of the current author and another conjecture of Hossain. This completes the enumerations of all sets of the form sāˆ’1(Av(Ļ„(1),ā€¦,Ļ„(r)))s^{-1}(\text{Av}(\tau^{(1)},\ldots,\tau^{(r)})) for {Ļ„(1),ā€¦,Ļ„(r)}āŠ†S3\{\tau^{(1)},\ldots,\tau^{(r)}\}\subseteq S_3 with the exception of the set {321}\{321\}. We also find an explicit formula for āˆ£sāˆ’1(Avn,k(231,312,321))āˆ£|s^{-1}(\text{Av}_{n,k}(231,312,321))|, where Avn,k(231,312,321)\text{Av}_{n,k}(231,312,321) is the set of permutations in Avn(231,312,321)\text{Av}_n(231,312,321) with kk descents. This allows us to prove a conjectured identity involving Catalan numbers and order ideals in Young's lattice.Comment: 20 pages, 4 figures. arXiv admin note: text overlap with arXiv:1903.0913

    Two Vignettes On Full Rook Placements

    Full text link
    Using bijections between pattern-avoiding permutations and certain full rook placements on Ferrers boards, we give short proofs of two enumerative results. The first is a simplified enumeration of the 3124, 1234-avoiding permutations, obtained recently by Callan via a complicated decomposition. The second is a streamlined bijection between 1342-avoiding permutations and permutations which can be sorted by two increasing stacks in series, originally due to Atkinson, Murphy, and Ru\v{s}kuc.Comment: 9 pages, 4 figure
    corecore