6 research outputs found

    Nonprehensile Manipulation of an Underactuated Mechanical System With Second-Order Nonholonomic Constraints: The Robotic Hula-Hoop

    Get PDF
    A mechanical system consisting of a hoop and a pole is considered, for which the corresponding dynamic model represents an underactuated system subject to second-order nonholonomic constraints. The pursued goal is to simultaneously track a trajectory in the unactuated coordinates and to stabilize the actuated ones. For the model under consideration, the well-known noncollocated partial feedback linearization algorithm fails since the corresponding zero dynamics is unstable. In this work, we show that the actuated coordinates, i.e., the pole can be stabilized by exploiting the null space of the coupling inertia matrix without affecting the performance in the underactuated coordinates tracking. We present a formal mathematical analysis, which guarantees ultimate boundedness of all coordinates. Performed simulations bolster the proposed approach

    On the Experiments about the Nonprehensile Reconfiguration of a Rolling Sphere on a Plate

    Get PDF
    A method to reconfigure in a nonprehensile way the pose (position and orientation) of a sphere rolling on a plate is proposed in this letter. The nonholonomic nature of the task is first solved at a planning level, where a geometric technique is employed to derive a Cartesian path to steer the sphere towards the arbitrarily desired pose. Then, an integral passivity-based control is designed to track the planned trajectory. The port-Hamiltonian formalism is employed to model the whole dynamics. Two approaches to move the plate are addressed in this paper, showing that only one of them allows the full controllability of the system. A humanoid-like robot is employed to bolster the proposed method experimentally

    Robotic Contact Juggling

    Full text link
    We define "robotic contact juggling" to be the purposeful control of the motion of a three-dimensional smooth object as it rolls freely on a motion-controlled robot manipulator, or "hand." While specific examples of robotic contact juggling have been studied before, in this paper we provide the first general formulation and solution method for the case of an arbitrary smooth object in single-point rolling contact on an arbitrary smooth hand. Our formulation splits the problem into four subproblems: (1) deriving the second-order rolling kinematics; (2) deriving the three-dimensional rolling dynamics; (3) planning rolling motions that satisfy the rolling dynamics; and (4) feedback stabilization of planned rolling trajectories. The theoretical results are demonstrated in simulation and experiment using feedback from a high-speed vision system.Comment: 16 pages, 14 figures. | Supplemental Video: https://youtu.be/QT55_Q1ePfg | Code: https://github.com/zackwoodruff/rolling_dynamic

    Rolling manipulation with a single control

    No full text
    corecore