2,047 research outputs found

    Tiresias: Predicting Security Events Through Deep Learning

    Full text link
    With the increased complexity of modern computer attacks, there is a need for defenders not only to detect malicious activity as it happens, but also to predict the specific steps that will be taken by an adversary when performing an attack. However this is still an open research problem, and previous research in predicting malicious events only looked at binary outcomes (e.g., whether an attack would happen or not), but not at the specific steps that an attacker would undertake. To fill this gap we present Tiresias, a system that leverages Recurrent Neural Networks (RNNs) to predict future events on a machine, based on previous observations. We test Tiresias on a dataset of 3.4 billion security events collected from a commercial intrusion prevention system, and show that our approach is effective in predicting the next event that will occur on a machine with a precision of up to 0.93. We also show that the models learned by Tiresias are reasonably stable over time, and provide a mechanism that can identify sudden drops in precision and trigger a retraining of the system. Finally, we show that the long-term memory typical of RNNs is key in performing event prediction, rendering simpler methods not up to the task

    Error analysis of sequence modeling for projecting cyber attacks

    Get PDF
    Intrusion Detection System (IDS) has become an integral component in the field of network security. Prior research has focused on developing efficient IDSs and correlating attacks as Attack Tracks. To enhance the network analyst\u27s situational awareness, sequence modeling techniques like Variable Length Markov Models (VLMM) have been used to project likely future attacks. However, such projections are made assuming that the IDSs detect each and every attack action, which is not viable in reality. An IDS could miss an attack due to loss of packets or improper traffic analysis, or when an attacker evades detection by employing obfuscation techniques. Such missed detections, could negatively affect the prediction model, resulting in erroneous estimations. This thesis investigates the prediction performance as an error analysis of VLMM when used for projecting cyber attacks. This analysis is based on the impact of missed alerts, representing undetected attack actions. The analysis begins with an analytical study of a state-based Markov model, called Causal-State Splitting Reconstruction (CSSR), to contrast the context-based VLMM. Simulation results show that VLMM and CSSR perform comparably, with VLMM being a simpler model without the need to maintain and train the state space. A thorough design of experiments studies the effects of missing IDS alerts, by having missed alerts at different locations of the attack sequence with different rates. The experimental results suggested that the change in prediction accuracy is low when there are missed alerts in one part of the sequence and higher if they are throughout the entire sequence. Also, the prediction accuracy increases when there are rare alerts missing, and it decreases when there are common alerts missing. In addition, change in the prediction accuracy is relatively less for sequences with smaller symbol space compared to sequences with larger symbol space. Overall, the results demonstrate the robustness and limitations of VLMM when used for cyber attack prediction. The insights derived in this analysis will be beneficial to the security analyst in assessing the model in terms of its predictive performance when there are missed alerts

    Spatiotemporal Patterns and Predictability of Cyberattacks

    Get PDF
    Y.C.L. was supported by Air Force Office of Scientific Research (AFOSR) under grant no. FA9550-10-1-0083 and Army Research Office (ARO) under grant no. W911NF-14-1-0504. S.X. was supported by Army Research Office (ARO) under grant no. W911NF-13-1-0141. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
    • …
    corecore