26,836 research outputs found

    Chiron: A Robust Recommendation System with Graph Regularizer

    Full text link
    Recommendation systems have been widely used by commercial service providers for giving suggestions to users. Collaborative filtering (CF) systems, one of the most popular recommendation systems, utilize the history of behaviors of the aggregate user-base to provide individual recommendations and are effective when almost all users faithfully express their opinions. However, they are vulnerable to malicious users biasing their inputs in order to change the overall ratings of a specific group of items. CF systems largely fall into two categories - neighborhood-based and (matrix) factorization-based - and the presence of adversarial input can influence recommendations in both categories, leading to instabilities in estimation and prediction. Although the robustness of different collaborative filtering algorithms has been extensively studied, designing an efficient system that is immune to manipulation remains a significant challenge. In this work we propose a novel "hybrid" recommendation system with an adaptive graph-based user/item similarity-regularization - "Chiron". Chiron ties the performance benefits of dimensionality reduction (through factorization) with the advantage of neighborhood clustering (through regularization). We demonstrate, using extensive comparative experiments, that Chiron is resistant to manipulation by large and lethal attacks

    Stability of matrix factorization for collaborative filtering

    Full text link
    We study the stability vis a vis adversarial noise of matrix factorization algorithm for matrix completion. In particular, our results include: (I) we bound the gap between the solution matrix of the factorization method and the ground truth in terms of root mean square error; (II) we treat the matrix factorization as a subspace fitting problem and analyze the difference between the solution subspace and the ground truth; (III) we analyze the prediction error of individual users based on the subspace stability. We apply these results to the problem of collaborative filtering under manipulator attack, which leads to useful insights and guidelines for collaborative filtering system design.Comment: ICML201

    Adversarial Training Towards Robust Multimedia Recommender System

    Full text link
    With the prevalence of multimedia content on the Web, developing recommender solutions that can effectively leverage the rich signal in multimedia data is in urgent need. Owing to the success of deep neural networks in representation learning, recent advance on multimedia recommendation has largely focused on exploring deep learning methods to improve the recommendation accuracy. To date, however, there has been little effort to investigate the robustness of multimedia representation and its impact on the performance of multimedia recommendation. In this paper, we shed light on the robustness of multimedia recommender system. Using the state-of-the-art recommendation framework and deep image features, we demonstrate that the overall system is not robust, such that a small (but purposeful) perturbation on the input image will severely decrease the recommendation accuracy. This implies the possible weakness of multimedia recommender system in predicting user preference, and more importantly, the potential of improvement by enhancing its robustness. To this end, we propose a novel solution named Adversarial Multimedia Recommendation (AMR), which can lead to a more robust multimedia recommender model by using adversarial learning. The idea is to train the model to defend an adversary, which adds perturbations to the target image with the purpose of decreasing the model's accuracy. We conduct experiments on two representative multimedia recommendation tasks, namely, image recommendation and visually-aware product recommendation. Extensive results verify the positive effect of adversarial learning and demonstrate the effectiveness of our AMR method. Source codes are available in https://github.com/duxy-me/AMR.Comment: TKD
    corecore