47 research outputs found

    Secure and robust machine learning for healthcare: A survey

    Get PDF
    Recent years have witnessed widespread adoption of machine learning (ML)/deep learning (DL) techniques due to their superior performance for a variety of healthcare applications ranging from the prediction of cardiac arrest from one-dimensional heart signals to computer-aided diagnosis (CADx) using multi-dimensional medical images. Notwithstanding the impressive performance of ML/DL, there are still lingering doubts regarding the robustness of ML/DL in healthcare settings (which is traditionally considered quite challenging due to the myriad security and privacy issues involved), especially in light of recent results that have shown that ML/DL are vulnerable to adversarial attacks. In this paper, we present an overview of various application areas in healthcare that leverage such techniques from security and privacy point of view and present associated challenges. In addition, we present potential methods to ensure secure and privacy-preserving ML for healthcare applications. Finally, we provide insight into the current research challenges and promising directions for future research

    AdvCat: Domain-Agnostic Robustness Assessment for Cybersecurity-Critical Applications with Categorical Inputs

    Full text link
    Machine Learning-as-a-Service systems (MLaaS) have been largely developed for cybersecurity-critical applications, such as detecting network intrusions and fake news campaigns. Despite effectiveness, their robustness against adversarial attacks is one of the key trust concerns for MLaaS deployment. We are thus motivated to assess the adversarial robustness of the Machine Learning models residing at the core of these security-critical applications with categorical inputs. Previous research efforts on accessing model robustness against manipulation of categorical inputs are specific to use cases and heavily depend on domain knowledge, or require white-box access to the target ML model. Such limitations prevent the robustness assessment from being as a domain-agnostic service provided to various real-world applications. We propose a provably optimal yet computationally highly efficient adversarial robustness assessment protocol for a wide band of ML-driven cybersecurity-critical applications. We demonstrate the use of the domain-agnostic robustness assessment method with substantial experimental study on fake news detection and intrusion detection problems.Comment: IEEE BigData 202

    Adversarial Attacks and Defenses in Explainable Artificial Intelligence: A Survey

    Full text link
    Explainable artificial intelligence (XAI) methods are portrayed as a remedy for debugging and trusting statistical and deep learning models, as well as interpreting their predictions. However, recent advances in adversarial machine learning (AdvML) highlight the limitations and vulnerabilities of state-of-the-art explanation methods, putting their security and trustworthiness into question. The possibility of manipulating, fooling or fairwashing evidence of the model's reasoning has detrimental consequences when applied in high-stakes decision-making and knowledge discovery. This survey provides a comprehensive overview of research concerning adversarial attacks on explanations of machine learning models, as well as fairness metrics. We introduce a unified notation and taxonomy of methods facilitating a common ground for researchers and practitioners from the intersecting research fields of AdvML and XAI. We discuss how to defend against attacks and design robust interpretation methods. We contribute a list of existing insecurities in XAI and outline the emerging research directions in adversarial XAI (AdvXAI). Future work should address improving explanation methods and evaluation protocols to take into account the reported safety issues.Comment: A shorter version of this paper was presented at the IJCAI 2023 Workshop on Explainable A

    Contribuciones a la Seguridad del Aprendizaje Automático

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, leída el 05-11-2020Machine learning (ML) applications have experienced an unprecedented growth over the last two decades. However, the ever increasing adoption of ML methodologies has revealed important security issues. Among these, vulnerabilities to adversarial examples, data instances targeted at fooling ML algorithms, are especially important. Examples abound. For instance, it is relatively easy to fool a spam detector simply misspelling spam words. Obfuscation of malware code can make it seem legitimate. Simply adding stickers to a stop sign could make an autonomous vehicle classify it as a merge sign. Consequences could be catastrophic. Indeed, ML is designed to work in stationary and benign environments. However, in certain scenarios, the presence of adversaries that actively manipulate input datato fool ML systems to attain benefits break such stationarity requirements. Training and operation conditions are not identical anymore. This creates a whole new class of security vulnerabilities that ML systems may face and a new desirable property: adversarial robustness. If we are to trust operations based on ML outputs, it becomes essential that learning systems are robust to such adversarial manipulations...Las aplicaciones del aprendizaje automático o machine learning (ML) han experimentado un crecimiento sin precedentes en las últimas dos décadas. Sin embargo, la adopción cada vez mayor de metodologías de ML ha revelado importantes problemas de seguridad. Entre estos, destacan las vulnerabilidades a ejemplos adversarios, es decir; instancias de datos destinadas a engañar a los algoritmos de ML. Los ejemplos abundan: es relativamente fácil engañar a un detector de spam simplemente escribiendo mal algunas palabras características de los correos basura. La ofuscación de código malicioso (malware) puede hacer que parezca legítimo. Agregando unos parches a una señal de stop, se podría provocar que un vehículo autónomo la reconociese como una señal de dirección obligatoria. Cómo puede imaginar el lector, las consecuencias de estas vulnerabilidades pueden llegar a ser catastróficas. Y es que el machine learning está diseñado para trabajar en entornos estacionarios y benignos. Sin embargo, en ciertos escenarios, la presencia de adversarios que manipulan activamente los datos de entrada para engañar a los sistemas de ML(logrando así beneficios), rompen tales requisitos de estacionariedad. Las condiciones de entrenamiento y operación de los algoritmos ya no son idénticas, quebrándose una de las hipótesis fundamentales del ML. Esto crea una clase completamente nueva de vulnerabilidades que los sistemas basados en el aprendizaje automático deben enfrentar y una nueva propiedad deseable: la robustez adversaria. Si debemos confiaren las operaciones basadas en resultados del ML, es esencial que los sistemas de aprendizaje sean robustos a tales manipulaciones adversarias...Fac. de Ciencias MatemáticasTRUEunpu

    Meta-Learning in Neural Networks: A Survey

    Get PDF
    The field of meta-learning, or learning-to-learn, has seen a dramatic rise in interest in recent years. Contrary to conventional approaches to AI where tasks are solved from scratch using a fixed learning algorithm, meta-learning aims to improve the learning algorithm itself, given the experience of multiple learning episodes. This paradigm provides an opportunity to tackle many conventional challenges of deep learning, including data and computation bottlenecks, as well as generalization. This survey describes the contemporary meta-learning landscape. We first discuss definitions of meta-learning and position it with respect to related fields, such as transfer learning and hyperparameter optimization. We then propose a new taxonomy that provides a more comprehensive breakdown of the space of meta-learning methods today. We survey promising applications and successes of meta-learning such as few-shot learning and reinforcement learning. Finally, we discuss outstanding challenges and promising areas for future research

    Secure and Trustworthy Artificial Intelligence-Extended Reality (AI-XR) for Metaverses

    Full text link
    Metaverse is expected to emerge as a new paradigm for the next-generation Internet, providing fully immersive and personalised experiences to socialize, work, and play in self-sustaining and hyper-spatio-temporal virtual world(s). The advancements in different technologies like augmented reality, virtual reality, extended reality (XR), artificial intelligence (AI), and 5G/6G communication will be the key enablers behind the realization of AI-XR metaverse applications. While AI itself has many potential applications in the aforementioned technologies (e.g., avatar generation, network optimization, etc.), ensuring the security of AI in critical applications like AI-XR metaverse applications is profoundly crucial to avoid undesirable actions that could undermine users' privacy and safety, consequently putting their lives in danger. To this end, we attempt to analyze the security, privacy, and trustworthiness aspects associated with the use of various AI techniques in AI-XR metaverse applications. Specifically, we discuss numerous such challenges and present a taxonomy of potential solutions that could be leveraged to develop secure, private, robust, and trustworthy AI-XR applications. To highlight the real implications of AI-associated adversarial threats, we designed a metaverse-specific case study and analyzed it through the adversarial lens. Finally, we elaborate upon various open issues that require further research interest from the community.Comment: 24 pages, 11 figure
    corecore