7 research outputs found

    A review of domain adaptation without target labels

    Full text link
    Domain adaptation has become a prominent problem setting in machine learning and related fields. This review asks the question: how can a classifier learn from a source domain and generalize to a target domain? We present a categorization of approaches, divided into, what we refer to as, sample-based, feature-based and inference-based methods. Sample-based methods focus on weighting individual observations during training based on their importance to the target domain. Feature-based methods revolve around on mapping, projecting and representing features such that a source classifier performs well on the target domain and inference-based methods incorporate adaptation into the parameter estimation procedure, for instance through constraints on the optimization procedure. Additionally, we review a number of conditions that allow for formulating bounds on the cross-domain generalization error. Our categorization highlights recurring ideas and raises questions important to further research.Comment: 20 pages, 5 figure

    Graceful Degradation and Related Fields

    Full text link
    When machine learning models encounter data which is out of the distribution on which they were trained they have a tendency to behave poorly, most prominently over-confidence in erroneous predictions. Such behaviours will have disastrous effects on real-world machine learning systems. In this field graceful degradation refers to the optimisation of model performance as it encounters this out-of-distribution data. This work presents a definition and discussion of graceful degradation and where it can be applied in deployed visual systems. Following this a survey of relevant areas is undertaken, novelly splitting the graceful degradation problem into active and passive approaches. In passive approaches, graceful degradation is handled and achieved by the model in a self-contained manner, in active approaches the model is updated upon encountering epistemic uncertainties. This work communicates the importance of the problem and aims to prompt the development of machine learning strategies that are aware of graceful degradation
    corecore