395 research outputs found

    Cerebellar Multimodular Control of Associative Behavior

    Get PDF

    Cerebellar Multimodular Control of Associative Behavior

    Get PDF

    Sensory Mapping in Zebrin-positive Modules in the Cerebellum

    Get PDF

    Sprezzatura : On Olivocerebellar Activity and Function

    Get PDF

    Sensory Mapping in Zebrin-positive Modules in the Cerebellum

    Get PDF

    Sprezzatura : On Olivocerebellar Activity and Function

    Get PDF

    Neurones glycinergiques et transmission inhibitrice dans les noyaux cérébelleux

    Get PDF
    The cerebellum is composed of a three-layered cortex and of nuclei and is responsible for the learned fine control of posture and movements. I combined a genetic approach (based on the use of transgenic mouse lines) with anatomical tracings, immunohistochemical stainings, electrophysiological recordings and optogenetic stimulations to establish the distinctive characteristics of the inhibitory neurons of the cerebellar nuclei and to detail their connectivity and their role in the cerebellar circuitry.We showed that the glycinergic inhibitory neurons of the cerebellar nuclei constitute a distinct neuronal population and are characterized by their mixed inhibitory GABAergic/glycinergic phenotype. Those inhibitory neurons are also distinguished by their axonal plexus which includes a local arborization with the cerebellar nuclei where they contact principal output neurons and a projection to the granular layer of the cerebellar cortex where they end onto Golgi cells dendrites. Finally, the inhibitory neurons of the cerebellar nuclei receive inhibitory afferents from Purkinje cells and may be contacted by mossy fibers or climbing fibers.We provided the first evidence of functional mixed transmission in the cerebellar nuclei and the first demonstration of a mixed inhibitory nucleo-cortical projection. Overall, our data establish the inhibitory neurons as the third cellular component of the cerebellar nuclei. Their importance in the modular organization of the cerebellum and their impact on sensory-motor integration need to be confirmed by optogenetic experiments in vivo.Le cervelet, composé d'un cortex et de noyaux, est responsable du contrôle moteur fin des mouvements et de la posture. En combinant une approche génétique (basée sur l'utilisation de lignées de souris transgéniques) avec des traçages anatomiques, des marquages immunohistochimiques et des expériences d'électrophysiologie et d'optogénétique, nous établissons les caractères distinctifs des neurones inhibiteurs des noyaux cérébelleux et en détaillons la connectivité ainsi que les fonctions dans le circuit cérébelleux. Les neurones inhibiteurs glycinergiques des noyaux profonds constituent une population de neurones distincts des autres types cellulaires identifiables par leur phénotype inhibiteur mixte GABAergique/glycinergique. Ces neurones se distinguent également par leur plexus axonal qui comporte une arborisation locale dans les noyaux cérébelleux où ils contactent les neurones principaux et une projection vers le cortex cérébelleux où ils contactent les cellules de Golgi. Ces neurones inhibiteurs reçoivent également des afférences inhibitrices des cellules de Purkinje et pourraient être contactés par les fibres moussues ou les fibres grimpantes.Nous apportons ainsi la première étude d'une transmission mixte fonctionnelle par les neurones inhibiteurs des noyaux cérébelleux, projetant à la fois dans les noyaux et le cortex cérébelleux. L'ensemble de nos données établissent les neurones inhibiteurs mixtes des noyaux cérébelleux comme la troisième composante cellulaire des noyaux profonds. Leur importance dans l'organisation modulaire du cervelet, ainsi que leur impact sur l'intégration sensori-motrice, devront être confirmés par des études optogénétiques in vivo

    Cerebellar Modules and Their Role as Operational Cerebellar Processing Units

    Get PDF
    The compartmentalization of the cerebellum into modules is often used to discuss its function. What, exactly, can be considered a module, how do they operate, can they be subdivided and do they act individually or in concert are only some of the key questions discussed in this consensus paper. Experts studying cerebellar compartmentalization give their insights on the structure and function of cerebellar modules, with the aim of providing an up-to-date review of the extensive literature on this subject. Starting with an historical perspective indicating that the basis of the modular organization is formed by matching olivocorticonuclear connectivity, this is followed by consideration of anatomical and chemical modular boundaries, revealing a relation between anatomical, chemical, and physiological borders. In addition, the question is asked what the smallest operational unit of the cerebellum might be. Furthermore, it has become clear that chemical diversity of Purkinje cells also results in diversity of information processing between cerebellar modules. An additional important consideration is the relation between modular compartmentalization and the organization of the mossy fiber system, resulting in the concept of modular plasticity. Finally, examination of cerebellar output patterns suggesting cooperation between modules and recent work on modular aspects of emotional behavior are discussed. Despite the general consensus that the cerebellum has a modular organization, many questions remain. The authors hope that this joint review will inspire future cerebellar research so that we are better able to understand how this brain structure makes its vital contribution to behavior in its most general form

    Electrophysiology of the Olivo-Cerebellar Loop

    Get PDF
    In animals, motor function and muscle control are critical for an organisms ability to interact with and react to its environment. This behavior can have many different functions, from finding food to defending themselves against enemies. In general, we can subdivide movements into two categories: 1) involuntary movements, like reflexes, and 2) voluntary movements. From an evolutionary point of view, the more efficient these movements are, the higher the chance of survival. In vertebrates, the cerebellum controls movement and monitors its efficiency by collecting sensory information, such as limb position, balance information and vision. All this information is evaluated to control and correct our intended movements . The cerebellum is located just above the brainstem at the lower back of the brain. In humans, it is the size of a fist and has a very high nerve cell (neuron) density. The outer layer of the cerebellum, also known as the cerebellar cortex, consists of grey matter and the inner layer consists of white matter. The neurons in the cerebellum are arranged in remarkably homogeneous and repetitive structural patterns with little variation in organization across species

    Trial-by-Trial Coding of Instructive Signals in the Cerebellum: Insights From Eyeblink Conditioning in Mice

    Get PDF
    The cerebellum is an area of the brain that plays a crucial role in the learning of motor skills. This process involves climbing fibers, which provide teaching signals to Purkinje cells in the cerebellar cortex when perturbations occur during a movement. However, controversy has arisen over climbing fibers contribution to cerebellar learning. This is because climbing-fiber signals are described as all-or-nothing : they fire a single burst of action potentials in response to all supra-threshold stimuli, regardless of their strength. On the contrary, motor learning is not all-or-nothing: the amount of learning is driven by the strength of perturbations. In this dissertation, I describe the experiments that I performed to unravel how climbing fibers may encode the strength of teaching signals. In Chapter 2, I present my behavioral studies in mice, which involved a simple cerebellar-dependent motor learning task, eyeblink conditioning. I show that mice take into account the strength of unexpected perturbations to adapt their movements trial-by-trial. In Chapter 3, I present a review of the previous literature and provide a hypothesis on how climbing fibers can encode the strength of teaching signals in a single trial. In Chapter 4, I present the findings of my in vivo two-photon calcium imaging experiments, which suggest climbing-fiber signals may not be all-or-nothing at the post-synaptic level. Finally, in Chapter 5 I describe the different mechanisms that we discovered for coding the intensity of teaching signals by Purkinje cells in the cerebellum of awake mice
    corecore