14,626 research outputs found

    Multimodal Image Denoising based on Coupled Dictionary Learning

    Get PDF
    In this paper, we propose a new multimodal image denoising approach to attenuate white Gaussian additive noise in a given image modality under the aid of a guidance image modality. The proposed coupled image denoising approach consists of two stages: coupled sparse coding and reconstruction. The first stage performs joint sparse transform for multimodal images with respect to a group of learned coupled dictionaries, followed by a shrinkage operation on the sparse representations. Then, in the second stage, the shrunken representations, together with coupled dictionaries, contribute to the reconstruction of the denoised image via an inverse transform. The proposed denoising scheme demonstrates the capability to capture both the common and distinct features of different data modalities. This capability makes our approach more robust to inconsistencies between the guidance and the target images, thereby overcoming drawbacks such as the texture copying artifacts. Experiments on real multimodal images demonstrate that the proposed approach is able to better employ guidance information to bring notable benefits in the image denoising task with respect to the state-of-the-art.Comment: 2018 IEEE International Conference on Image Processing (ICIP). arXiv admin note: text overlap with arXiv:1806.0988

    From Rank Estimation to Rank Approximation: Rank Residual Constraint for Image Restoration

    Full text link
    In this paper, we propose a novel approach to the rank minimization problem, termed rank residual constraint (RRC) model. Different from existing low-rank based approaches, such as the well-known nuclear norm minimization (NNM) and the weighted nuclear norm minimization (WNNM), which estimate the underlying low-rank matrix directly from the corrupted observations, we progressively approximate the underlying low-rank matrix via minimizing the rank residual. Through integrating the image nonlocal self-similarity (NSS) prior with the proposed RRC model, we apply it to image restoration tasks, including image denoising and image compression artifacts reduction. Towards this end, we first obtain a good reference of the original image groups by using the image NSS prior, and then the rank residual of the image groups between this reference and the degraded image is minimized to achieve a better estimate to the desired image. In this manner, both the reference and the estimated image are updated gradually and jointly in each iteration. Based on the group-based sparse representation model, we further provide a theoretical analysis on the feasibility of the proposed RRC model. Experimental results demonstrate that the proposed RRC model outperforms many state-of-the-art schemes in both the objective and perceptual quality
    • …
    corecore