286 research outputs found

    The Error Performance and Fairness of CUWB Correlated Channels

    Get PDF
    AbstractThe symbol period becomes smaller compared to the channel delay in multiband orthogonal frequency division multiplexing (MB-OFDM) cognitive ultra wideband (CUWB) wireless communications, the transmitted signals experiences frequency-selective fading and leads to performance degradation. In this paper, a new design method for space-time trellis codes in MB-OFDM systems with correlated Rayleigh fading channels is introduced. This method converts the single output code symbol into several STTC code symbols, which are to be transmitted simultaneously from multiple transmitter-antennas. By using Viterbi optimal soft decision decoding algorithm, we investigate both quasi-static and interleaved channels and demonstrate how the spatial fading correlation affects the performance of spaceā€“time codes over these two different MB-OFDM wireless channel models. Simulation results show that the performance of spaceā€“time code is to be robust to spatial correlation. When the system bandwidth increases, the long term fairness quality will gradually become better and finally converges to 1

    Super-orthogonal space-time turbo coded OFDM systems.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2012.The ever increasing demand for fast and efficient broadband wireless communication services requires future broadband communication systems to provide a high data rate, robust performance and low complexity within the limited available electromagnetic spectrum. One of the identified, most-promising techniques to support high performance and high data rate communication for future wireless broadband services is the deployment of multi-input multi-output (MIMO) antenna systems with orthogonal frequency division multiplexing (OFDM). The combination of MIMO and OFDM techniques guarantees a much more reliable and robust transmission over a hostile wireless channel through coding over the space, time and frequency domains. In this thesis, two full-rate space-time coded OFDM systems are proposed. The first one, designed for two transmit antennas, is called extended super-orthogonal space-time trellis coded OFDM (ESOSTTC-OFDM), and is based on constellation rotation. The second one, called super-quasi-orthogonal space-time trellis coded OFDM (SQOSTTCOFDM), combines a quasi-orthogonal space-time block code with a trellis code to provide a full-rate code for four transmit antennas. The designed space-time coded MIMO-OFDM systems achieve a high diversity order with high coding gain by exploiting the diversity advantage of frequency-selective fading channels. Concatenated codes have been shown to be an effective technique of achieving reliable communication close to the Shannon limit, provided that there is sufficient available diversity. In a bid to improve the performance of the super orthogonal space-time trellis code (SOSTTC) in frequency selective fading channels, five distinct concatenated codes are proposed for MIMO-OFDM over frequency-selective fading channels in the second part of this thesis. Four of the coding schemes are based on the concatenation of convolutional coding, interleaving, and space-time coding, along multiple-transmitter diversity systems, while the fifth coding scheme is based on the concatenation of two space-time codes and interleaving. The proposed concatenated Super-Orthogonal Space-Time Turbo-Coded OFDM System I. B. Oluwafemi 2012 vii coding schemes in MIMO-OFDM systems achieve high diversity gain by exploiting available diversity resources of frequency-selective fading channels and achieve a high coding gain through concatenations by employing the turbo principle. Using computer software simulations, the performance of the concatenated SOSTTC-OFDM schemes is compared with those of concatenated space-time trellis codes and those of conventional SOSTTC-OFDM schemes in frequency-selective fading channels. Simulation results show that the concatenated SOSTTC-OFDM system outperformed the concatenated space-time trellis codes and the conventional SOSTTC-OFDM system under the various channel scenarios in terms of both diversity order and coding gain

    Space-time coding techniques for high data rate wireless communications

    Full text link

    Space-Time Codes Concatenated with Turbo Codes over Fading Channels

    Get PDF
    The uses of space-time code (STC) and iterative processing have enabled robust communications over fading channels at previously unachievable signal-to-noise ratios. Maintaining desired transmission rate while improving the diversity from STC is challenging, and the performance of the STC suļ¬€ers considerably due to lack of channel state information (CSI). This dissertation research addresses issues of considerable importance in the design of STC with emphasis on eļ¬ƒcient concatenation of channel coding and STC with theoretical bound derivation of the proposed schemes, iterative space-time trellis coding (STTC), and diļ¬€erential space-time codes. First, we concatenate space-time block code (STBC) with turbo code for improving diversity gain as well as coding gain. Proper soft-information sharing is indispensable to the iterative decoding process. We derive the required soft outputs from STBC decoders for passing to outer turbo code. Traditionally, the performance of STBC schemes has been evaluated under perfect channel estimation. For fast time-varying channel, obtaining the CSI is tedious if not impossible. We introduce a scheme of calculating the CSI at the receiver from the received signal without the explicit channel estimation. The encoder of STTC, which is generally decoded using Viterbi like algorithm, is based on a trellis structure. This trellis structure provides an inherent advantage for the STTC scheme that an iterative decoding is feasible with the minimal addition computational complexity. An iteratively decoded space-time trellis coding (ISTTC) is proposed in this dissertation, where the STTC schemes are used as constituent codes of turbo code. Then, the performance upper bound of the proposed ISTTC is derived. Finally, for implementing STBC without channel estimation and maintaining trans- mission rate, we concatenate diļ¬€erential space-time block codes (DSTBC) with ISTTC. The serial concatenation of DSTBC or STBC with ISTTC oļ¬€ers improving performance, even without an outer channel code. These schemes reduce the system complexity com- pared to the standalone ISTTC and increase the transmission rate under the same SNR condition. Detailed design procedures of these proposed schemes are analyzed

    Performance analysis of channel codes in multiple antenna OFDM systems

    Get PDF
    Multiple antenna techniques are used to increase the robustness and performance of wireless networks. Multiple antenna techniques can achieve diversity and increase bandwidth efficiency when specially designed channel codes are used at the schemeā€™s transmitter. These channel codes can be designed in the space, time and frequency domain. These specially designed channel codes in the space and time domain are actually designed for flat fading channels and in frequency selective fading channel, their performance may be degraded. To counteract this possible performance degradation in frequency selective fading channel, two main approaches can be applied to mitigate the effect of the symbol interference due to the frequency selective fading channel. These approaches are multichannel equalisation and orthogonal frequency division multiplexing (OFDM). In this thesis, a multichannel equalisation technique and OFDM were applied to channel codes specially designed for multiple antenna systems. An optimum receiver was proposed for super-orthogonal space-time trellis codes in a multichannel equalised frequency selective environment. Although the proposed receiver had increased complexity, the diversity order is still the same as compared to the code in a flat fading channel. To take advantage of the multipath diversity possible in a frequency selective fading channel, super-orthogonal block codes were employed in an OFDM environment. A new kind of super-orthogonal block code was proposed in this thesis. Super-orthogonal space-frequency trellis-coded OFDM was proposed to take advantage of not only the possible multipath diversity but also the spatial diversity for coded OFDM schemes. Based on simulation results in this thesis, the proposed coded OFDM scheme performs better than all other coded OFDM schemes (i.e. space time trellis-coded OFDM, space-time block coded OFDM, space-frequency block coded OFDM and super-orthogonal space-time trellis-coded OFDM). A simplified channel estimation algorithm was proposed for two of the coded OFDM schemes, which form a broad-based classification of coded OFDM schemes, i.e. trelliscoded schemes and block-coded schemes. Finally in this thesis performance analysis using the Gauss Chebychev quadrature technique as a way of validating simulation results was done for super-orthogonal block coded OFDM schemes when channel state information is known and when it is estimated. The results obtained show that results obtained via simulation and analysis are asymptotic and therefore the proposed analysis technique can be use to obtain error rate values for different SNR region instead of time consuming simulation.Thesis (PhD)--University of Pretoria, 2012.Electrical, Electronic and Computer Engineeringunrestricte

    Mitigating PAPR in cooperative wireless networks with frequency selective channels and relay selection

    Get PDF
    The focus of this thesis is peak-to-average power ratio (PAPR) reduction in cooperative wireless networks which exploit orthogonal frequency division multiplexing in transmission. To reduce the PAPR clipping is employed at the source node. The first contribution focuses upon an amplify-and-forward (AF) type network with four relay nodes which exploits distributed closed loop extended orthogonal space frequency block coding to improve end-to-end performance. Oversampling and filtering are used at the source node to reduce out-of-band interference and the iterative amplitude reconstruction decoding technique is used at the destination node to mitigate in-band distortion which is introduced by the clipping process. In addition, by exploiting quantized group feedback and phase rotation at two of the relay nodes, the system achieves full cooperative diversity in addition to array gain. The second contribution area is outage probability analysis in the context of multi-relay selection in a cooperative AF network with frequency selective fading channels. The gains of time domain multi-path fading channels with L paths are modeled with an Erlang distribution. General closed form expressions for the lower and upper bounds of outage probability are derived for arbitrary channel length L as a function of end-to-end signal to noise ratio. This analysis is then extended for the case when single relay selection from an arbitrary number of relay nodes M is performed. The spatial and temporal cooperative diversity gain is then analysed. In addition, exact form of outage probability for multi-path channel length L = 2 and selecting the best single relay from an arbitrary number of relay nodes M is obtained. Moreover, selecting a pair of relays when L = 2 or 3 is additionally analysed. Finally, the third contribution context is outage probability analysis of a cooperative AF network with single and two relay pair selection from M available relay nodes together with clipping at the source node, which is explicitly modelled. MATLAB and Maple software based simulations are employed throughout the thesis to support the analytical results and assess the performance of algorithms and methods

    Performance Analysis Of A Cellular System Using C-Ofdm Techniques

    Get PDF
    The basic idea of COFDM is to split the modulation samples of incoming data stream onto a large number of carriers instead of modulating a unique carrier. Therefore, COFDM is an effective technique for combating multi-path fading and for highbit- rate transmission over wireless channel. In a single carrier system a frequency Selective fading can cause the entire transmission link to fail, but in an COFDM multi carrier system, only a small percentage of the sub-carriers will be corrupted. Frequency and time interleaving in conjunction with forward error correction coding can then be used to correct for erroneous subcarriers. The background information with the aim to provide an intuitive explanation of our research motivation. C-OFDM is the modulation scheme of choice , as enshrined in International standard for all forms of digital broadcasting both audio and video and including satellite, terrestrial, and cable. In the existing standard the ā€œcodingā€ referred to consists of an inner convolutional code concatenated with an outer R-S code; here in this thesis, we replace the inner code with the coding like space time trellis code for analysi

    Performance analysis of space-time codes with channel information errors

    Get PDF
    Many space-time codes (STC) have been proposed to enhance the performance of wireless communications in flat fading channels. All of them rely on the knowledge of the channel, and are hence affected by the channel estimation errors. Most previous research on STC performance evaluation assume perfect channel information. In this paper, we investigate STC robustness under imperfect channel knowledge. We first define the concept of "closeness" by comparing the BER under channel estimation errors with that of perfect channel knowledge, aiming to characterize STC performance degradation due to imperfect channel knowledge. Then the robustness of STC can be compared by their "closeness" to perfect results. In our computer simulations, we apply the same channel estimator to different STCs in Orthogonal Frequency Division Multiplexing (OFDM) communication systems. We find that for systems with two and three transmit antennas, the space time block codes (STBC) are always more robust to channel estimation errors than space time trellis codes (STTC). With the increase of receive diversity, all STCs become more robust to the channel estimation errors. For STTC, as the number of trellis states increases, the codes become less robust to the channel estimation errors. We also compare the BER performance of STC in the presence of channel estimation errors. For the two-transmit-antenna system, the performance of STBC is always better than that of the 4-state STTC, but is always worse than 16-state STTC. For systems with three transmit antennas, the BER performance of STTC is much better than that of STBC. Ā© 2004 IEEE.published_or_final_versio
    • ā€¦
    corecore