69 research outputs found

    Robust Reduced-Rank Adaptive Processing Based on Parallel Subgradient Projection and Krylov Subspace Techniques

    Full text link
    In this paper, we propose a novel reduced-rank adaptive filtering algorithm by blending the idea of the Krylov subspace methods with the set-theoretic adaptive filtering framework. Unlike the existing Krylov-subspace-based reduced-rank methods, the proposed algorithm tracks the optimal point in the sense of minimizing the \sinq{true} mean square error (MSE) in the Krylov subspace, even when the estimated statistics become erroneous (e.g., due to sudden changes of environments). Therefore, compared with those existing methods, the proposed algorithm is more suited to adaptive filtering applications. The algorithm is analyzed based on a modified version of the adaptive projected subgradient method (APSM). Numerical examples demonstrate that the proposed algorithm enjoys better tracking performance than the existing methods for the interference suppression problem in code-division multiple-access (CDMA) systems as well as for simple system identification problems.Comment: 10 figures. In IEEE Transactions on Signal Processing, 201

    Trading off Complexity With Communication Costs in Distributed Adaptive Learning via Krylov Subspaces for Dimensionality Reduction

    Get PDF
    In this paper, the problemof dimensionality reduction in adaptive distributed learning is studied. We consider a network obeying the ad-hoc topology, in which the nodes sense an amount of data and cooperate with each other, by exchanging information, in order to estimate an unknown, common, parameter vector. The algorithm, to be presented here, follows the set-theoretic estimation rationale; i.e., at each time instant and at each node of the network, a closed convex set is constructed based on the received measurements, and this defines the region in which the solution is searched for. In this paper, these closed convex sets, known as property sets, take the form of hyperslabs. Moreover, in order to reduce the number of transmitted coefficients, which is dictated by the dimension of the unknown vector, we seek for possible solutions in a subspace of lower dimension; the technique will be developed around the Krylov subspace rationale. Our goal is to find a point that belongs to the intersection of this infinite number of hyperslabs and the respective Krylov subspaces. This is achieved via a sequence of projections onto the property sets and the Krylov subspaces. The case of highly correlated inputs that degrades the performance of the algorithm is also considered. This is overcome via a transformation whichwhitens the input. The proposed schemes are brought in a decentralized form by adopting the combine-adapt cooperation strategy among the nodes. Full convergence analysis is carried out and numerical tests verify the validity of the proposed schemes in different scenarios in the context of the adaptive distributed system identification task

    Trading off communications bandwidth with accuracy in adaptive diffusion networks

    Get PDF
    In this paper, a novel algorithm for bandwidth reduction in adaptive distributed learning is introduced. We deal with diffusion networks, in which the nodes cooperate with each other, by exchanging information, in order to estimate an unknown parameter vector of interest. We seek for solutions in the framework of set theoretic estimation. Moreover, in order to reduce the required bandwidth by the transmitted information, which is dictated by the dimension of the unknown vector, we choose to project and work in a lower dimension Krylov subspace. This provides the benefit of trading off dimensionality with accuracy. Full convergence properties are presented, and experiments, within the system identification task, demonstrate the robustness of the algorithmic technique

    Subsampling Algorithms for Semidefinite Programming

    Full text link
    We derive a stochastic gradient algorithm for semidefinite optimization using randomization techniques. The algorithm uses subsampling to reduce the computational cost of each iteration and the subsampling ratio explicitly controls granularity, i.e. the tradeoff between cost per iteration and total number of iterations. Furthermore, the total computational cost is directly proportional to the complexity (i.e. rank) of the solution. We study numerical performance on some large-scale problems arising in statistical learning.Comment: Final version, to appear in Stochastic System

    Optimization Methods for Inverse Problems

    Full text link
    Optimization plays an important role in solving many inverse problems. Indeed, the task of inversion often either involves or is fully cast as a solution of an optimization problem. In this light, the mere non-linear, non-convex, and large-scale nature of many of these inversions gives rise to some very challenging optimization problems. The inverse problem community has long been developing various techniques for solving such optimization tasks. However, other, seemingly disjoint communities, such as that of machine learning, have developed, almost in parallel, interesting alternative methods which might have stayed under the radar of the inverse problem community. In this survey, we aim to change that. In doing so, we first discuss current state-of-the-art optimization methods widely used in inverse problems. We then survey recent related advances in addressing similar challenges in problems faced by the machine learning community, and discuss their potential advantages for solving inverse problems. By highlighting the similarities among the optimization challenges faced by the inverse problem and the machine learning communities, we hope that this survey can serve as a bridge in bringing together these two communities and encourage cross fertilization of ideas.Comment: 13 page

    Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions

    Get PDF
    Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets. This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed—either explicitly or implicitly—to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, robustness, and/or speed. These claims are supported by extensive numerical experiments and a detailed error analysis. The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the k dominant components of the singular value decomposition of an m × n matrix. (i) For a dense input matrix, randomized algorithms require O(mn log(k)) floating-point operations (flops) in contrast to O(mnk) for classical algorithms. (ii) For a sparse input matrix, the flop count matches classical Krylov subspace methods, but the randomized approach is more robust and can easily be reorganized to exploit multiprocessor architectures. (iii) For a matrix that is too large to fit in fast memory, the randomized techniques require only a constant number of passes over the data, as opposed to O(k) passes for classical algorithms. In fact, it is sometimes possible to perform matrix approximation with a single pass over the data
    corecore