61 research outputs found

    Stable Constrained Dynamics

    Get PDF
    International audienceWe present a unification of the two main approaches to simulate deformable solids, namely elasticity and constraints. Elasticity accurately handles soft to moderately stiff objects, but becomes numerically hard as stiffness increases. Constraints efficiently handle high stiffness, but when integrated in time they can suffer from instabilities in the nullspace directions, generating spurious transverse vibrations when pulling hard on thin inextensible objects or articulated rigid bodies. We show that geometric stiffness, the tensor encoding the change of force directions (as opposed to intensities) in response to a change of positions, is the missing piece between the two approaches. This previously neglected stiffness term is easy to implement and dramatically improves the stability of inextensible objects and articulated chains, without adding artificial bending forces. This allows time step increases up to several orders of magnitude using standard linear solvers

    Novel Degrees of Freedom, Constraints, and Stiffness Formulation for Physically Based Animation

    Get PDF
    I identify and improve upon three distinct components of physically simulated systems with the aim of increasing both robustness and efficiency for the application of computer graphics: A) the degrees of freedom of a system; B) the constraints put on that system; C) and the stiffness that derives from force differentiation and in turn enables implicit integration techniques. These three components come up in many implementations of physics-based simulation in computer animation. From a combination of these components, I explore four novel ideas implemented and experimented on over the course of my graduate degree. Eulerian-on-Lagrangian Cloth Simulation resolves a longstanding problem of simulating contact-mediated interaction of cloth and sharp geometric features by exploring a combination of all three of our components. Bilateral Staggered Projections for Joints explores the constrained degrees of freedom of articulated rigid bodies in a reduced state to extend the popular Staggered Projects technique into a novel formulation for rapid evaluation of frictional articulated dynamics. Condensation Jacobian with Adaptivity looks at using reduction methods to improve the efficiency of soft body deformations by allowing larger time step in dynamics simulations. Finally, Ldot: Boosting Deformation Performance with Cholesky Extrapolation explores the inner workings of sparse direct solvers to introduce a Cholesky factorization that is linearly extrapolated in time, which can improve the performance when encapsulated inside an iterative nonlinear solver
    • …
    corecore