1,135 research outputs found

    Channel State Information from pure communication to sense and track human motion: A survey

    Get PDF
    Human motion detection and activity recognition are becoming vital for the applications in smart homes. Traditional Human Activity Recognition (HAR) mechanisms use special devices to track human motions, such as cameras (vision-based) and various types of sensors (sensor-based). These mechanisms are applied in different applications, such as home security, Human–Computer Interaction (HCI), gaming, and healthcare. However, traditional HAR methods require heavy installation, and can only work under strict conditions. Recently, wireless signals have been utilized to track human motion and HAR in indoor environments. The motion of an object in the test environment causes fluctuations and changes in the Wi-Fi signal reflections at the receiver, which result in variations in received signals. These fluctuations can be used to track object (i.e., a human) motion in indoor environments. This phenomenon can be improved and leveraged in the future to improve the internet of things (IoT) and smart home devices. The main Wi-Fi sensing methods can be broadly categorized as Received Signal Strength Indicator (RSSI), Wi-Fi radar (by using Software Defined Radio (SDR)) and Channel State Information (CSI). CSI and RSSI can be considered as device-free mechanisms because they do not require cumbersome installation, whereas the Wi-Fi radar mechanism requires special devices (i.e., Universal Software Radio Peripheral (USRP)). Recent studies demonstrate that CSI outperforms RSSI in sensing accuracy due to its stability and rich information. This paper presents a comprehensive survey of recent advances in the CSI-based sensing mechanism and illustrates the drawbacks, discusses challenges, and presents some suggestions for the future of device-free sensing technology

    Multi-function RF for Situational Awareness

    Get PDF
    Radio frequency (RF) communications are an integral part of many situational awareness applications. Sensing data need to be processed in a timely manner, making it imperative to have a robust and reliable RF link for information dissemination. Moreover, there is an increasing need for exploiting RF communication signals directly for sensing, leading to the notion of multi-function RF. In the first part of this dissertation, we investigate the development of a robust Multiple-Input Multiple-Output (MIMO) communication system suitable for airborne platforms.Three majors challenges in realizing MIMO capacity gain in airborne environment are addressed: 1) antenna blockage due largely to the orientation of the antenna array; 2) the presence of unknown interference inherent to the intended application; 3) the lack of channel state information (CSI) at the transmitter. Built on the Diagonal Bell-Labs Layered Space-Time (D-BLAST) MIMO architecture, the system integrates three key design approaches: spatial spreading to counter antenna blockage; temporal spreading to mitigate signal to interference and noise ratio degradation due to intended or unintended interference; and a simple low rate feedback scheme to enable real time adaptation in the absence of full transmitter CSI. Extensive experiment studies using a fully functioning 4Ă—44\times 4 MIMO system validate the developed system. In the second part, ambient RF signals are exploited to extract situational awareness information directly. Using WiFi signals as an example, we demonstrate that the CSI obtained at the receiver contains rich information about the propagation environment. Two distinct learning systems are developed for occupancy detection using passive WiFi sensing. The first one is based on deep learning where a parallel convolutional neural network (CNN) architecture is designed to extract useful information from both magnitude and phase of the CSI. Pre-processing steps are carefully designed to preserve human motion induced channel variation while insulating against other impairments and post-processing is applied after CNN to infer presence information for instantaneous motion outputs. To alleviate the need of tedious training efforts involved in deep learning based system, a novel learning problem with contaminated sampling is formulated. This leads to a second learning system: a two-stage solution for motion detection using support vector machines (SVM). A one-class SVM model is first evaluated whose training data are from human free environment only. Decontamination of human presence data using the one-class SVM is done prior to motion detection through a two-class support vector classifier. Extensive experiments using commercial off-the-shelf WiFi devices are conducted for both systems. The results demonstrate that the learning based RF sensing provides a viable and promising alternative for occupancy detection as they are much more sensitive to human motion than passive infrared sensors which are widely deployed in commercial and residential buildings

    Wi-Fi Sensing: Applications and Challenges

    Full text link
    Wi-Fi technology has strong potentials in indoor and outdoor sensing applications, it has several important features which makes it an appealing option compared to other sensing technologies. This paper presents a survey on different applications of Wi-Fi based sensing systems such as elderly people monitoring, activity classification, gesture recognition, people counting, through the wall sensing, behind the corner sensing, and many other applications. The challenges and interesting future directions are also highlighted
    • …
    corecore