1,818 research outputs found

    Byzantine Attack and Defense in Cognitive Radio Networks: A Survey

    Full text link
    The Byzantine attack in cooperative spectrum sensing (CSS), also known as the spectrum sensing data falsification (SSDF) attack in the literature, is one of the key adversaries to the success of cognitive radio networks (CRNs). In the past couple of years, the research on the Byzantine attack and defense strategies has gained worldwide increasing attention. In this paper, we provide a comprehensive survey and tutorial on the recent advances in the Byzantine attack and defense for CSS in CRNs. Specifically, we first briefly present the preliminaries of CSS for general readers, including signal detection techniques, hypothesis testing, and data fusion. Second, we analyze the spear and shield relation between Byzantine attack and defense from three aspects: the vulnerability of CSS to attack, the obstacles in CSS to defense, and the games between attack and defense. Then, we propose a taxonomy of the existing Byzantine attack behaviors and elaborate on the corresponding attack parameters, which determine where, who, how, and when to launch attacks. Next, from the perspectives of homogeneous or heterogeneous scenarios, we classify the existing defense algorithms, and provide an in-depth tutorial on the state-of-the-art Byzantine defense schemes, commonly known as robust or secure CSS in the literature. Furthermore, we highlight the unsolved research challenges and depict the future research directions.Comment: Accepted by IEEE Communications Surveys and Tutoiral

    When Attackers Meet AI: Learning-empowered Attacks in Cooperative Spectrum Sensing

    Full text link
    Defense strategies have been well studied to combat Byzantine attacks that aim to disrupt cooperative spectrum sensing by sending falsified versions of spectrum sensing data to a fusion center. However, existing studies usually assume network or attackers as passive entities, e.g., assuming the prior knowledge of attacks is known or fixed. In practice, attackers can actively adopt arbitrary behaviors and avoid pre-assumed patterns or assumptions used by defense strategies. In this paper, we revisit this security vulnerability as an adversarial machine learning problem and propose a novel learning-empowered attack framework named Learning-Evaluation-Beating (LEB) to mislead the fusion center. Based on the black-box nature of the fusion center in cooperative spectrum sensing, our new perspective is to make the adversarial use of machine learning to construct a surrogate model of the fusion center's decision model. We propose a generic algorithm to create malicious sensing data using this surrogate model. Our real-world experiments show that the LEB attack is effective to beat a wide range of existing defense strategies with an up to 82% of success ratio. Given the gap between the proposed LEB attack and existing defenses, we introduce a non-invasive method named as influence-limiting defense, which can coexist with existing defenses to defend against LEB attack or other similar attacks. We show that this defense is highly effective and reduces the overall disruption ratio of LEB attack by up to 80%

    Spectrum sharing security and attacks in CRNs: a review

    Get PDF
    Cognitive Radio plays a major part in communication technology by resolving the shortage of the spectrum through usage of dynamic spectrum access and artificial intelligence characteristics. The element of spectrum sharing in cognitive radio is a fundament al approach in utilising free channels. Cooperatively communicating cognitive radio devices use the common control channel of the cognitive radio medium access control to achieve spectrum sharing. Thus, the common control channel and consequently spectrum sharing security are vital to ensuring security in the subsequent data communication among cognitive radio nodes. In addition to well known security problems in wireless networks, cognitive radio networks introduce new classes of security threats and challenges, such as licensed user emulation attacks in spectrum sensing and misbehaviours in the common control channel transactions, which degrade the overall network operation and performance. This review paper briefly presents the known threats and attacks in wireless networks before it looks into the concept of cognitive radio and its main functionality. The paper then mainly focuses on spectrum sharing security and its related challenges. Since spectrum sharing is enabled through usage of the common control channel, more attention is paid to the security of the common control channel by looking into its security threats as well as protection and detection mechanisms. Finally, the pros and cons as well as the comparisons of different CR - specific security mechanisms are presented with some open research issues and challenges

    A Study on Techniques/Algorithms used for Detection and Prevention of Security Attacks in Cognitive Radio Networks

    Get PDF
    In this paper a detailed survey is carried out on the taxonomy of Security Issues, Advances on Security Threats and Countermeasures ,A Cross-Layer Attack, Security Status and Challenges for Cognitive Radio Networks, also a detailed survey on several Algorithms/Techniques used to detect and prevent SSDF(Spectrum Sensing Data Falsification) attack a type of DOS (Denial of Service) attack and several other  Network layer attacks in Cognitive Radio Network or Cognitive Radio Wireless Sensor Node Networks(WSNN’s) to analyze the advantages and disadvantages of those existing algorithms/techniques

    Reinforcement learning-based trust and reputation model for spectrum leasing in cognitive radio networks

    Get PDF
    Cognitive Radio (CR), which is the next generation wireless communication system, enables unlicensed users or Secondary Users (SUs) to exploit underutilized spectrum (called white spaces) owned by the licensed users or Primary Users(PUs) so that bandwidth availability improves at the SUs, which helps to improve the overall spectrum utilization. Collaboration, which has been adopted in various schemes such distributed channel sensing and channel access, is an intrinsic characteristic of CR to improve network performance. However, the requirement to collaborate has inevitably open doors to various forms of attacks by malicious SUs, and this can be addressed using Trust and Reputation Management (TRM). Generally speaking, TRM detects malicious SUs including honest SUs that turn malicious. To achieve a more efficient detection, we advocate the use of Reinforcement Learning (RL), which is known to be flexible and adaptable to the changes in operating environment in order to achieve optimal network performance. Its ability to learn and re-learn throughout the duration of its existence provides intelligence to the proposed TRM model, and so the focus on RL-based TRM model in this paper. Our preliminary results show that the detection performance of RLbased TRM model has an improvement of 15% over the traditional TRM in a centralized cognitive radio network. The investigation in the paper serves as an important foundation for future work in this research field

    A Secure Cooperative Sensing Protocol for Cognitive Radio Networks

    Get PDF
    Cognitive radio networks sense spectrum occupancy and manage themselves to operate in unused bands without disturbing licensed users. Spectrum sensing is more accurate if jointly performed by several reliable nodes. Even though cooperative sensing is an active area of research, the secure authentication of local sensing reports remains unsolved, thus empowering false results. This paper presents a distributed protocol based on digital signatures and hash functions, and an analysis of its security features. The system allows determining a final sensing decision from multiple sources in a quick and secure way.Las redes de radio cognitiva detectora de espectro se las arreglan para operar en las nuevas bandas sin molestar a los usuarios con licencia. La detección de espectro es más precisa si el conjunto está realizado por varios nodos fiables. Aunque la detección cooperativa es un área activa de investigación, la autenticación segura de informes locales de detección no ha sido resuelta, por lo tanto se pueden dar resultados falsos. Este trabajo presenta un protocolo distribuido basado en firmas digitales y en funciones hash, y un análisis de sus características de seguridad. El sistema permite determinar una decisión final de detección de múltiples fuentes de una manera rápida y segura.Les xarxes de ràdio cognitiva detectora d'espectre se les arreglen per operar en les noves bandes sense destorbar els usuaris amb llicència. La detecció d'espectre és més precisa si el conjunt està realitzat per diversos nodes fiables. Encara que la detecció cooperativa és una àrea activa d'investigació, l'autenticació segura d'informes locals de detecció no ha estat resolta, per tant es poden donar resultats falsos. Aquest treball presenta un protocol distribuït basat en signatures digitals i en funcions hash, i una anàlisi de les seves característiques de seguretat. El sistema permet determinar una decisió final de detecció de múltiples fonts d'una manera ràpida i segura

    Spectrum Sensing and Security Challenges and Solutions: Contemporary Affirmation of the Recent Literature

    Get PDF
    Cognitive radio (CR) has been recently proposed as a promising technology to improve spectrum utilization by enabling secondary access to unused licensed bands. A prerequisite to this secondary access is having no interference to the primary system. This requirement makes spectrum sensing a key function in cognitive radio systems. Among common spectrum sensing techniques, energy detection is an engaging method due to its simplicity and efficiency. However, the major disadvantage of energy detection is the hidden node problem, in which the sensing node cannot distinguish between an idle and a deeply faded or shadowed band. Cooperative spectrum sensing (CSS) which uses a distributed detection model has been considered to overcome that problem. On other dimension of this cooperative spectrum sensing, this is vulnerable to sensing data falsification attacks due to the distributed nature of cooperative spectrum sensing. As the goal of a sensing data falsification attack is to cause an incorrect decision on the presence/absence of a PU signal, malicious or compromised SUs may intentionally distort the measured RSSs and share them with other SUs. Then, the effect of erroneous sensing results propagates to the entire CRN. This type of attacks can be easily launched since the openness of programmable software defined radio (SDR) devices makes it easy for (malicious or compromised) SUs to access low layer protocol stacks, such as PHY and MAC. However, detecting such attacks is challenging due to the lack of coordination between PUs and SUs, and unpredictability in wireless channel signal propagation, thus calling for efficient mechanisms to protect CRNs. Here in this paper we attempt to perform contemporary affirmation of the recent literature of benchmarking strategies that enable the trusted and secure cooperative spectrum sensing among Cognitive Radios

    Intelligent spectrum management techniques for wireless cognitive radio networks

    Get PDF
    PhD ThesisThis thesis addresses many of the unique spectrum management chal- lenges in CR networks for the rst time. These challenges have a vital e ect on the network performance and are particularly di cult to solve due to the unique characteristics of CR networks. Speci cally, this thesis proposes and investigates three intelligent spectrum management tech- niques for CR networks. The issues investigated in this thesis have a fundamental impact on the establishment, functionality and security of CR networks. First, an intelligent primary receiver-aware message exchange protocol for CR ad hoc networks is proposed. It considers the problem of alleviat- ing the interference collision risk to primary user communication, explic- itly to protect primary receivers that are not detected during spectrum sensing. The proposed protocol achieves a higher measure of safeguard- ing. A practical scenario is considered where no global network topology is known and no common control channel is assumed to exist. Second, a novel CR broadcast protocol (CRBP) to reliably disseminate the broadcast messages to all or most of the possible CR nodes in the network is proposed. The CRBP formulates the broadcast problem as a bipartite-graph problem. Thus, CRBP achieves a signi cant successful delivery ratio by connecting di erent local topologies, which is a unique feature in CR ad hoc networks. Finally, a new defence strategy to defend against spectrum sensing data falsi cation attacks in CR networks is proposed. In order to identify malicious users, the proposed scheme performs multiple veri cations of sensory data with the assistance of trusted nodes.Higher Committee For Education Devel- opment in Iraq (HCED-Iraq
    corecore