748 research outputs found

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Software Defined Radio Implementation Of Ds-Cdma In Inter-Satellite Communications For Small Satellites

    Get PDF
    The increased usage of CubeSats recently has changed the communication philosophy from long-range point-to-point propagations to a multi-hop network of small orbiting nodes. Separating system tasks into many dispersed satellites can increase system survivability, versatility, configurability, adaptability, and autonomy. Inter-satellite links (ISL) enable the satellites to exchange information and share resources while reducing the traffic load to the ground. Establishment and stability of the ISL are impacted by factors such as the satellite orbit and attitude, antenna configuration, constellation topology, mobility, and link range. Software Defined Radio (SDR) is beginning to be heavily used in small satellite communications for applications such as base stations. A software-defined radio is a software program that does the functionality of a hardware system. The digital signal processing blocks are incorporated into the software giving it more flexibility and modulation. With this, the idea of a remote upgrade from the ground as well as the potential to accommodate new applications and future services without hardware changes is very promising. Realizing this, my idea is to create an inter-satellite link using software defined radio. The advantages of this are higher data rates, modification of operating frequencies, possibility of reaching higher frequency bands for higher throughputs, flexible modulation, demodulation and encoding schemes, and ground modifications. However, there are several challenges in utilizing the software-defined radio to create an inter-satellite link communication for small satellites. In this paper, we designed and implemented a multi-user inter-satellite communication network using SDRs, where Code Division Multiple Access (CDMA) technique is utilized to manage the multiple accesses to shared communication channel among the satellites. This model can be easily reconfigured to support any encoding/decoding, modulation, and other signal processing schemes

    Software Defined Radio Implementation Of Ds-Cdma In Inter-Satellite Communications For Small Satellites

    Get PDF
    The increased usage of CubeSats recently has changed the communication philosophy from long-range point-to-point propagations to a multi-hop network of small orbiting nodes. Separating system tasks into many dispersed satellites can increase system survivability, versatility, configurability, adaptability, and autonomy. Inter-satellite links (ISL) enable the satellites to exchange information and share resources while reducing the traffic load to the ground. Establishment and stability of the ISL are impacted by factors such as the satellite orbit and attitude, antenna configuration, constellation topology, mobility, and link range. Software Defined Radio (SDR) is beginning to be heavily used in small satellite communications for applications such as base stations. A software-defined radio is a software program that does the functionality of a hardware system. The digital signal processing blocks are incorporated into the software giving it more flexibility and modulation. With this, the idea of a remote upgrade from the ground as well as the potential to accommodate new applications and future services without hardware changes is very promising. Realizing this, my idea is to create an inter-satellite link using software defined radio. The advantages of this are higher data rates, modification of operating frequencies, possibility of reaching higher frequency bands for higher throughputs, flexible modulation, demodulation and encoding schemes, and ground modifications. However, there are several challenges in utilizing the software-defined radio to create an inter-satellite link communication for small satellites. In this paper, we designed and implemented a multi-user inter-satellite communication network using SDRs, where Code Division Multiple Access (CDMA) technique is utilized to manage the multiple accesses to shared communication channel among the satellites. This model can be easily reconfigured to support any encoding/decoding, modulation, and other signal processing schemes

    Economically sustainable public security and emergency network exploiting a broadband communications satellite

    Get PDF
    The research contributes to work in Rapid Deployment of a National Public Security and Emergency Communications Network using Communication Satellite Broadband. Although studies in Public Security Communication networks have examined the use of communications satellite as an integral part of the Communication Infrastructure, there has not been an in-depth design analysis of an optimized regional broadband-based communication satellite in relation to the envisaged service coverage area, with little or no terrestrial last-mile telecommunications infrastructure for delivery of satellite solutions, applications and services. As such, the research provides a case study of a Nigerian Public Safety Security Communications Pilot project deployed in regions of the African continent with inadequate terrestrial last mile infrastructure and thus requiring a robust regional Communications Satellite complemented with variants of terrestrial wireless technologies to bridge the digital hiatus as a short and medium term measure apart from other strategic needs. The research not only addresses the pivotal role of a secured integrated communications Public safety network for security agencies and emergency service organizations with its potential to foster efficient information symmetry amongst their operations including during emergency and crisis management in a timely manner but demonstrates a working model of how analogue spectrum meant for Push-to-Talk (PTT) services can be re-farmed and digitalized as a “dedicated” broadband-based public communications system. The network’s sustainability can be secured by using excess capacity for the strategic commercial telecommunication needs of the state and its citizens. Utilization of scarce spectrum has been deployed for Nigeria’s Cashless policy pilot project for financial and digital inclusion. This effectively drives the universal access goals, without exclusivity, in a continent, which still remains the least wired in the world

    Evolution of High Throughput Satellite Systems: Vision, Requirements, and Key Technologies

    Full text link
    High throughput satellites (HTS), with their digital payload technology, are expected to play a key role as enablers of the upcoming 6G networks. HTS are mainly designed to provide higher data rates and capacities. Fueled by technological advancements including beamforming, advanced modulation techniques, reconfigurable phased array technologies, and electronically steerable antennas, HTS have emerged as a fundamental component for future network generation. This paper offers a comprehensive state-of-the-art of HTS systems, with a focus on standardization, patents, channel multiple access techniques, routing, load balancing, and the role of software-defined networking (SDN). In addition, we provide a vision for next-satellite systems that we named as extremely-HTS (EHTS) toward autonomous satellites supported by the main requirements and key technologies expected for these systems. The EHTS system will be designed such that it maximizes spectrum reuse and data rates, and flexibly steers the capacity to satisfy user demand. We introduce a novel architecture for future regenerative payloads while summarizing the challenges imposed by this architecture

    Aeronautical Data Networks

    Get PDF

    Dynamic frequency assignment for mobile users in multibeam satellite constellations

    Get PDF
    Els nivells de flexibilitat i escalabilitat mai vistos de la propera generació de sistemes de comunicació per satèl·lit exigeixen nous algorismes de gestió de recursos que s'adaptin a contextos dinàmics. El futur entorn dels serveis de comunicació per satèl·lit estarà definit per un nombre més gran d'usuaris, una gran part dels quals correspondrà a usuaris mòbils com avions o vaixells. El repte addicional que introdueixen aquests usuaris és abordar la incertesa espai-temporal que es presenta en forma de retards, canvis en la seva trajectòria, o tots dos. Atès que els usuaris mòbils constituiran un segment important del mercat, els operadors de satèl·lits prioritzen l'aprofitament dels avançats sistemes digitals per desenvolupar estratègies flexibles d'assignació de recursos que siguin robustes davant de les bases d'usuaris dinàmiques. Un dels problemes clau en aquest context és com gestionar l'espectre de freqüències de manera eficient. Mentre que nombroses solucions aborden escenaris d'assignació de dinàmica freqüències, el nivell addicional de complexitat que presenten els usuaris mòbils no ha estat prou estudiat, i no és clar si els nous algorismes d'assignació de freqüències poden abordar la incertesa espai-temporal. Concretament, sostenim que els canvis inesperats en la posició dels usuaris introdueixen noves restriccions en l'assignació de freqüències que els algoritmes la literatura podrien no ser capaços de complir, especialment si les decisions s'han de prendre en temps real i a escala. Per solucionar aquesta limitació, proposem un algorisme de gestió dinàmica de freqüències basat en programació lineal entera que assigna recursos a escenaris amb usuaris tant fixos com mòbils, tenint en compte la incertesa espai-temporal d'aquests últims. El nostre mètode inclou tant la planificació a llarg termini com l'operació en temps real, una sinergia que no ha estat prou explorada per a les comunicacions per satèl·lit i que és crítica quan s'opera sota incertesa. PLos niveles de flexibilidad y escalabilidad nunca vistos de la próxima generación de sistemas de comunicación por satélite exigen nuevos algoritmos de gestión de recursos que se adapten a contextos dinámicos. El futuro entorno de los servicios de comunicación por satélite estará definido por un mayor número de usuarios, una gran parte de los cuales corresponderá a usuarios móviles como aviones o barcos. El reto adicional que introducen estos usuarios es abordar la incertidumbre espacio-temporal que se presenta en forma de retrasos, cambios en su trayectoria, o ambos. Dado que los usuarios móviles constituirán un segmento importante del mercado, los operadores de satélites dan prioridad al aprovechamiento de los avanzadas sistemas digitales para desarrollar estrategias flexibles de asignación de recursos que sean robustas frente a las bases de usuarios dinámicas. Uno de los problemas clave en este contexto es cómo gestionar el espectro de frecuencias de forma eficiente. Mientras que numerosas soluciones abordan escenarios de asignación dinámica de frecuencias, el nivel adicional de complejidad que presentan los usuarios móviles no ha sido suficientemente estudiado, y no está claro si los nuevos algoritmos de asignación de frecuencias pueden abordar la incertidumbre espacio-temporal. En concreto, sostenemos que los cambios inesperados en la posición de los usuarios introducen nuevas restricciones en la asignación de frecuencias que los algoritmos la literatura podrían no ser capaces de cumplir, especialmente si las decisiones deben tomarse en tiempo real y a escala. Para solventar esta limitación, proponemos un algoritmo de gestión dinámica de frecuencias basado en la programación lineal entera que asigna recursos en escenarios con usuarios tanto fijos como móviles, teniendo en cuenta la incertidumbre espacio-temporal de estos últimos. Nuestro método incluye tanto la planificación a largo plazo como la operación en tiempo real, una sinergia que no ha sido suficientThe unprecedented levels of flexibility and scalability of the next generation of communication satellite systems call for new resource management algorithms that adapt to dynamic environments. The upcoming landscape of satellite communication services will be defined by an increased number of unique users, a large portion of which will correspond to mobile users such as planes or ships. The additional challenge introduced by these users is addressing the spatiotemporal uncertainty that comes in the form of delays, changes in their trajectory, or both. Given that mobile users will constitute an important segment of the market, satellite operators prioritize leveraging modern digital payloads to develop flexible resource allocation strategies that are robust against dynamic user bases. One of the key problems in this context is how to manage the frequency spectrum efficiently. While numerous solutions address dynamic frequency assignment scenarios, the additional layer of complexity presented by mobile users has not been sufficiently studied, and it is unclear whether novel frequency assignment algorithms can address spatiotemporal uncertainty. Specifically, we argue that unexpected changes in the position of users introduce new restrictions into the frequency assignment, which previous algorithms in the literature might not be able to meet, especially if decisions need to be made in real-time and at scale. To address this gap, we propose a dynamic frequency management algorithm based on integer linear programming that assigns resources in scenarios with both fixed and mobile users, accounting for the spatiotemporal uncertainty of the latter. Our method includes both long-term planning and real-time operation, a synergy that has not been sufficiently explored for satellite communications and proves to be critical when operating under uncertainty. To fulfill the problem’s scope, we propose different strategies that extend a state-of-the-art frequency management algOutgoin
    corecore