35 research outputs found

    Privacy-Preserving Eye Videos using Rubber Sheet Model

    Full text link
    Video-based eye trackers estimate gaze based on eye images/videos. As security and privacy concerns loom over technological advancements, tackling such challenges is crucial. We present a new approach to handle privacy issues in eye videos by replacing the current identifiable iris texture with a different iris template in the video capture pipeline based on the Rubber Sheet Model. We extend to image blending and median-value representations to demonstrate that videos can be manipulated without significantly degrading segmentation and pupil detection accuracy.Comment: Will be published in ETRA 20 Short Papers, June 2-5, 2020, Stuttgart, Germany Copyright 2020 Association for Computing Machiner

    Motion tracking of iris features to detect small eye movements

    Get PDF
    The inability of current video-based eye trackers to reliably detect very small eye movements has led to confusion about the prevalence or even the existence of monocular microsaccades (small, rapid eye movements that occur in only one eye at a time). As current methods often rely on precisely localizing the pupil and/or corneal reflection on successive frames, current microsaccade-detection algorithms often suffer from signal artifacts and a low signal-to-noise ratio. We describe a new video-based eye tracking methodology which can reliably detect small eye movements over 0.2 degrees (12 arcmin) with very high confidence. Our method tracks the motion of iris features to estimate velocity rather than position, yielding a better record of microsaccades. We provide a more robust, detailed record of miniature eye movements by relying on more stable, higher-order features (such as local features of iris texture) instead of lower-order features (such as pupil center and corneal reflection), which are sensitive to noise and drift

    Objective measurement of motion in the orbit

    Get PDF
    The research described in the thesis had two major aims: to find methods for objective measurement of motion in the orbit, and to determine the clinical use of these methods in patients with orbital disorders. This implied that a number of research questions had to be answered in the fields of both image science and of ophthalmology and orbitology. The results have established that measurement of the two- and three-dimensional motion of tissues in the orbit is feasible in humans. It can be imaged in 2-D and 3-D with Magnetic Resonance Imaging (MRI) sequences. It can be calculated objectively from these sequences using optical flow methods. First order techniques were found to be superior for this purpose as they are less sensitive to noise, partial volume effects and aliasing. A new first-order 3-D optical flow algorithm was developed for robust and computationally efficient three-dimensional optical flow estimation. A number of techniques were developed to visualize 2- and 3-D motion combined with the anatomy in 3-D space, using color-coding. The results of two clinical studies have established the clinical use of objective measurement of motion in the orbit in a number of orbital and motion disorders. The studies have resulted in an explanation for the persistent pain that may occur after enucleation of the globe, based on motion measurements in patients after enucleation. They have also shown that orbital tumors can be differentiated using motion studies. The results have also shown that the position of the rectus muscle pulleys is the same in patients with Graves disease and in normals. After surgical decompression of the orbit, the muscles and their pulleys are usually not displaced, except in cases where specific muscle paths and pulleys are displaced in specific patterns, resulting in specific motility disturbances. Thus, a new explanation has been found for the motility disturbances that may occur in some patients after decompression surgery for Graves orbitopathy. These last findings have led to the notion central to this thesis, namely that the orbital tissues are an organ in their own right, the organ of gaze, and do not need their bony orbit to function normally

    Vision-based techniques for gait recognition

    Full text link
    Global security concerns have raised a proliferation of video surveillance devices. Intelligent surveillance systems seek to discover possible threats automatically and raise alerts. Being able to identify the surveyed object can help determine its threat level. The current generation of devices provide digital video data to be analysed for time varying features to assist in the identification process. Commonly, people queue up to access a facility and approach a video camera in full frontal view. In this environment, a variety of biometrics are available - for example, gait which includes temporal features like stride period. Gait can be measured unobtrusively at a distance. The video data will also include face features, which are short-range biometrics. In this way, one can combine biometrics naturally using one set of data. In this paper we survey current techniques of gait recognition and modelling with the environment in which the research was conducted. We also discuss in detail the issues arising from deriving gait data, such as perspective and occlusion effects, together with the associated computer vision challenges of reliable tracking of human movement. Then, after highlighting these issues and challenges related to gait processing, we proceed to discuss the frameworks combining gait with other biometrics. We then provide motivations for a novel paradigm in biometrics-based human recognition, i.e. the use of the fronto-normal view of gait as a far-range biometrics combined with biometrics operating at a near distance

    Deep into the Eyes: Applying Machine Learning to improve Eye-Tracking

    Get PDF
    Eye-tracking has been an active research area with applications in personal and behav- ioral studies, medical diagnosis, virtual reality, and mixed reality applications. Improving the robustness, generalizability, accuracy, and precision of eye-trackers while maintaining privacy is crucial. Unfortunately, many existing low-cost portable commercial eye trackers suffer from signal artifacts and a low signal-to-noise ratio. These trackers are highly depen- dent on low-level features such as pupil edges or diffused bright spots in order to precisely localize the pupil and corneal reflection. As a result, they are not reliable for studying eye movements that require high precision, such as microsaccades, smooth pursuit, and ver- gence. Additionally, these methods suffer from reflective artifacts, occlusion of the pupil boundary by the eyelid and often require a manual update of person-dependent parame- ters to identify the pupil region. In this dissertation, I demonstrate (I) a new method to improve precision while maintaining the accuracy of head-fixed eye trackers by combin- ing velocity information from iris textures across frames with position information, (II) a generalized semantic segmentation framework for identifying eye regions with a further extension to identify ellipse fits on the pupil and iris, (III) a data-driven rendering pipeline to generate a temporally contiguous synthetic dataset for use in many eye-tracking ap- plications, and (IV) a novel strategy to preserve privacy in eye videos captured as part of the eye-tracking process. My work also provides the foundation for future research by addressing critical questions like the suitability of using synthetic datasets to improve eye-tracking performance in real-world applications, and ways to improve the precision of future commercial eye trackers with improved camera specifications

    Image Registration Workshop Proceedings

    Get PDF
    Automatic image registration has often been considered as a preliminary step for higher-level processing, such as object recognition or data fusion. But with the unprecedented amounts of data which are being and will continue to be generated by newly developed sensors, the very topic of automatic image registration has become and important research topic. This workshop presents a collection of very high quality work which has been grouped in four main areas: (1) theoretical aspects of image registration; (2) applications to satellite imagery; (3) applications to medical imagery; and (4) image registration for computer vision research

    Aerospace medicine and biology: A cumulative index to a continuing bibliography (supplement 345)

    Get PDF
    This publication is a cumulative index to the abstracts contained in Supplements 333 through 344 of Aerospace Medicine and Biology: A Continuing Bibliography. Seven indexes are included -- subject, personal author, corporate source, foreign technology, contract number, report number, and accession number

    Human Factors:Sustainable life and mobility

    Get PDF

    Human Factors:Sustainable life and mobility

    Get PDF
    corecore