995 research outputs found

    Robust Non-Linear Matrix Factorization for Dictionary Learning, Denoising, and Clustering

    Full text link
    Low dimensional nonlinear structure abounds in datasets across computer vision and machine learning. Kernelized matrix factorization techniques have recently been proposed to learn these nonlinear structures for denoising, classification, dictionary learning, and missing data imputation, by observing that the image of the matrix in a sufficiently large feature space is low-rank. However, these nonlinear methods fail in the presence of sparse noise or outliers. In this work, we propose a new robust nonlinear factorization method called Robust Non-Linear Matrix Factorization (RNLMF). RNLMF constructs a dictionary for the data space by factoring a kernelized feature space; a noisy matrix can then be decomposed as the sum of a sparse noise matrix and a clean data matrix that lies in a low dimensional nonlinear manifold. RNLMF is robust to sparse noise and outliers and scales to matrices with thousands of rows and columns. Empirically, RNLMF achieves noticeable improvements over baseline methods in denoising and clustering

    Low-Rank Modeling and Its Applications in Image Analysis

    Full text link
    Low-rank modeling generally refers to a class of methods that solve problems by representing variables of interest as low-rank matrices. It has achieved great success in various fields including computer vision, data mining, signal processing and bioinformatics. Recently, much progress has been made in theories, algorithms and applications of low-rank modeling, such as exact low-rank matrix recovery via convex programming and matrix completion applied to collaborative filtering. These advances have brought more and more attentions to this topic. In this paper, we review the recent advance of low-rank modeling, the state-of-the-art algorithms, and related applications in image analysis. We first give an overview to the concept of low-rank modeling and challenging problems in this area. Then, we summarize the models and algorithms for low-rank matrix recovery and illustrate their advantages and limitations with numerical experiments. Next, we introduce a few applications of low-rank modeling in the context of image analysis. Finally, we conclude this paper with some discussions.Comment: To appear in ACM Computing Survey

    Matrix Recovery with Implicitly Low-Rank Data

    Full text link
    In this paper, we study the problem of matrix recovery, which aims to restore a target matrix of authentic samples from grossly corrupted observations. Most of the existing methods, such as the well-known Robust Principal Component Analysis (RPCA), assume that the target matrix we wish to recover is low-rank. However, the underlying data structure is often non-linear in practice, therefore the low-rankness assumption could be violated. To tackle this issue, we propose a novel method for matrix recovery in this paper, which could well handle the case where the target matrix is low-rank in an implicit feature space but high-rank or even full-rank in its original form. Namely, our method pursues the low-rank structure of the target matrix in an implicit feature space. By making use of the specifics of an accelerated proximal gradient based optimization algorithm, the proposed method could recover the target matrix with non-linear structures from its corrupted version. Comprehensive experiments on both synthetic and real datasets demonstrate the superiority of our method

    Relations among Some Low Rank Subspace Recovery Models

    Full text link
    Recovering intrinsic low dimensional subspaces from data distributed on them is a key preprocessing step to many applications. In recent years, there has been a lot of work that models subspace recovery as low rank minimization problems. We find that some representative models, such as Robust Principal Component Analysis (R-PCA), Robust Low Rank Representation (R-LRR), and Robust Latent Low Rank Representation (R-LatLRR), are actually deeply connected. More specifically, we discover that once a solution to one of the models is obtained, we can obtain the solutions to other models in closed-form formulations. Since R-PCA is the simplest, our discovery makes it the center of low rank subspace recovery models. Our work has two important implications. First, R-PCA has a solid theoretical foundation. Under certain conditions, we could find better solutions to these low rank models at overwhelming probabilities, although these models are non-convex. Second, we can obtain significantly faster algorithms for these models by solving R-PCA first. The computation cost can be further cut by applying low complexity randomized algorithms, e.g., our novel â„“2,1\ell_{2,1} filtering algorithm, to R-PCA. Experiments verify the advantages of our algorithms over other state-of-the-art ones that are based on the alternating direction method.Comment: Submitted to Neural Computatio

    A survey of sparse representation: algorithms and applications

    Full text link
    Sparse representation has attracted much attention from researchers in fields of signal processing, image processing, computer vision and pattern recognition. Sparse representation also has a good reputation in both theoretical research and practical applications. Many different algorithms have been proposed for sparse representation. The main purpose of this article is to provide a comprehensive study and an updated review on sparse representation and to supply a guidance for researchers. The taxonomy of sparse representation methods can be studied from various viewpoints. For example, in terms of different norm minimizations used in sparsity constraints, the methods can be roughly categorized into five groups: sparse representation with l0l_0-norm minimization, sparse representation with lpl_p-norm (0<<p<<1) minimization, sparse representation with l1l_1-norm minimization and sparse representation with l2,1l_{2,1}-norm minimization. In this paper, a comprehensive overview of sparse representation is provided. The available sparse representation algorithms can also be empirically categorized into four groups: greedy strategy approximation, constrained optimization, proximity algorithm-based optimization, and homotopy algorithm-based sparse representation. The rationales of different algorithms in each category are analyzed and a wide range of sparse representation applications are summarized, which could sufficiently reveal the potential nature of the sparse representation theory. Specifically, an experimentally comparative study of these sparse representation algorithms was presented. The Matlab code used in this paper can be available at: http://www.yongxu.org/lunwen.html.Comment: Published on IEEE Access, Vol. 3, pp. 490-530, 201

    A General Model for Robust Tensor Factorization with Unknown Noise

    Full text link
    Because of the limitations of matrix factorization, such as losing spatial structure information, the concept of low-rank tensor factorization (LRTF) has been applied for the recovery of a low dimensional subspace from high dimensional visual data. The low-rank tensor recovery is generally achieved by minimizing the loss function between the observed data and the factorization representation. The loss function is designed in various forms under different noise distribution assumptions, like L1L_1 norm for Laplacian distribution and L2L_2 norm for Gaussian distribution. However, they often fail to tackle the real data which are corrupted by the noise with unknown distribution. In this paper, we propose a generalized weighted low-rank tensor factorization method (GWLRTF) integrated with the idea of noise modelling. This procedure treats the target data as high-order tensor directly and models the noise by a Mixture of Gaussians, which is called MoG GWLRTF. The parameters in the model are estimated under the EM framework and through a new developed algorithm of weighted low-rank tensor factorization. We provide two versions of the algorithm with different tensor factorization operations, i.e., CP factorization and Tucker factorization. Extensive experiments indicate the respective advantages of this two versions in different applications and also demonstrate the effectiveness of MoG GWLRTF compared with other competing methods.Comment: 13 pages, 8 figure

    Learning Robust Representations for Computer Vision

    Full text link
    Unsupervised learning techniques in computer vision often require learning latent representations, such as low-dimensional linear and non-linear subspaces. Noise and outliers in the data can frustrate these approaches by obscuring the latent spaces. Our main goal is deeper understanding and new development of robust approaches for representation learning. We provide a new interpretation for existing robust approaches and present two specific contributions: a new robust PCA approach, which can separate foreground features from dynamic background, and a novel robust spectral clustering method, that can cluster facial images with high accuracy. Both contributions show superior performance to standard methods on real-world test sets.Comment: 8 pages, 7 page

    Self-Expressive Decompositions for Matrix Approximation and Clustering

    Full text link
    Data-aware methods for dimensionality reduction and matrix decomposition aim to find low-dimensional structure in a collection of data. Classical approaches discover such structure by learning a basis that can efficiently express the collection. Recently, "self expression", the idea of using a small subset of data vectors to represent the full collection, has been developed as an alternative to learning. Here, we introduce a scalable method for computing sparse SElf-Expressive Decompositions (SEED). SEED is a greedy method that constructs a basis by sequentially selecting incoherent vectors from the dataset. After forming a basis from a subset of vectors in the dataset, SEED then computes a sparse representation of the dataset with respect to this basis. We develop sufficient conditions under which SEED exactly represents low rank matrices and vectors sampled from a unions of independent subspaces. We show how SEED can be used in applications ranging from matrix approximation and denoising to clustering, and apply it to numerous real-world datasets. Our results demonstrate that SEED is an attractive low-complexity alternative to other sparse matrix factorization approaches such as sparse PCA and self-expressive methods for clustering.Comment: 11 pages, 7 figure

    Fast, Robust and Non-convex Subspace Recovery

    Full text link
    This work presents a fast and non-convex algorithm for robust subspace recovery. The data sets considered include inliers drawn around a low-dimensional subspace of a higher dimensional ambient space, and a possibly large portion of outliers that do not lie nearby this subspace. The proposed algorithm, which we refer to as Fast Median Subspace (FMS), is designed to robustly determine the underlying subspace of such data sets, while having lower computational complexity than existing methods. We prove convergence of the FMS iterates to a stationary point. Further, under a special model of data, FMS converges to a point which is near to the global minimum with overwhelming probability. Under this model, we show that the iteration complexity is globally bounded and locally rr-linear. The latter theorem holds for any fixed fraction of outliers (less than 1) and any fixed positive distance between the limit point and the global minimum. Numerical experiments on synthetic and real data demonstrate its competitive speed and accuracy

    Low Rank Regularization: A Review

    Full text link
    Low rank regularization, in essence, involves introducing a low rank or approximately low rank assumption for matrix we aim to learn, which has achieved great success in many fields including machine learning, data mining and computer version. Over the last decade, much progress has been made in theories and practical applications. Nevertheless, the intersection between them is very slight. In order to construct a bridge between practical applications and theoretical research, in this paper we provide a comprehensive survey for low rank regularization. We first review several traditional machine learning models using low rank regularization, and then show their (or their variants) applications in solving practical issues, such as non-rigid structure from motion and image denoising. Subsequently, we summarize the regularizers and optimization methods that achieve great success in traditional machine learning tasks but are rarely seen in solving practical issues. Finally, we provide a discussion and comparison for some representative regularizers including convex and non-convex relaxations. Extensive experimental results demonstrate that non-convex regularizers can provide a large advantage over the nuclear norm, the regularizer widely used in solving practical issues.Comment: 16 pages,4 figures,4 table
    • …
    corecore