158,719 research outputs found

    Staple: Complementary Learners for Real-Time Tracking

    Full text link
    Correlation Filter-based trackers have recently achieved excellent performance, showing great robustness to challenging situations exhibiting motion blur and illumination changes. However, since the model that they learn depends strongly on the spatial layout of the tracked object, they are notoriously sensitive to deformation. Models based on colour statistics have complementary traits: they cope well with variation in shape, but suffer when illumination is not consistent throughout a sequence. Moreover, colour distributions alone can be insufficiently discriminative. In this paper, we show that a simple tracker combining complementary cues in a ridge regression framework can operate faster than 80 FPS and outperform not only all entries in the popular VOT14 competition, but also recent and far more sophisticated trackers according to multiple benchmarks.Comment: To appear in CVPR 201

    Evaluation of trackers for Pan-Tilt-Zoom Scenarios

    Full text link
    Tracking with a Pan-Tilt-Zoom (PTZ) camera has been a research topic in computer vision for many years. Compared to tracking with a still camera, the images captured with a PTZ camera are highly dynamic in nature because the camera can perform large motion resulting in quickly changing capture conditions. Furthermore, tracking with a PTZ camera involves camera control to position the camera on the target. For successful tracking and camera control, the tracker must be fast enough, or has to be able to predict accurately the next position of the target. Therefore, standard benchmarks do not allow to assess properly the quality of a tracker for the PTZ scenario. In this work, we use a virtual PTZ framework to evaluate different tracking algorithms and compare their performances. We also extend the framework to add target position prediction for the next frame, accounting for camera motion and processing delays. By doing this, we can assess if predicting can make long-term tracking more robust as it may help slower algorithms for keeping the target in the field of view of the camera. Results confirm that both speed and robustness are required for tracking under the PTZ scenario.Comment: 6 pages, 2 figures, International Conference on Pattern Recognition and Artificial Intelligence 201

    MobiFace: A Novel Dataset for Mobile Face Tracking in the Wild

    Full text link
    Face tracking serves as the crucial initial step in mobile applications trying to analyse target faces over time in mobile settings. However, this problem has received little attention, mainly due to the scarcity of dedicated face tracking benchmarks. In this work, we introduce MobiFace, the first dataset for single face tracking in mobile situations. It consists of 80 unedited live-streaming mobile videos captured by 70 different smartphone users in fully unconstrained environments. Over 95K95K bounding boxes are manually labelled. The videos are carefully selected to cover typical smartphone usage. The videos are also annotated with 14 attributes, including 6 newly proposed attributes and 8 commonly seen in object tracking. 36 state-of-the-art trackers, including facial landmark trackers, generic object trackers and trackers that we have fine-tuned or improved, are evaluated. The results suggest that mobile face tracking cannot be solved through existing approaches. In addition, we show that fine-tuning on the MobiFace training data significantly boosts the performance of deep learning-based trackers, suggesting that MobiFace captures the unique characteristics of mobile face tracking. Our goal is to offer the community a diverse dataset to enable the design and evaluation of mobile face trackers. The dataset, annotations and the evaluation server will be on \url{https://mobiface.github.io/}.Comment: To appear on The 14th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2019

    Efficient Diverse Ensemble for Discriminative Co-Tracking

    Full text link
    Ensemble discriminative tracking utilizes a committee of classifiers, to label data samples, which are in turn, used for retraining the tracker to localize the target using the collective knowledge of the committee. Committee members could vary in their features, memory update schemes, or training data, however, it is inevitable to have committee members that excessively agree because of large overlaps in their version space. To remove this redundancy and have an effective ensemble learning, it is critical for the committee to include consistent hypotheses that differ from one-another, covering the version space with minimum overlaps. In this study, we propose an online ensemble tracker that directly generates a diverse committee by generating an efficient set of artificial training. The artificial data is sampled from the empirical distribution of the samples taken from both target and background, whereas the process is governed by query-by-committee to shrink the overlap between classifiers. The experimental results demonstrate that the proposed scheme outperforms conventional ensemble trackers on public benchmarks.Comment: CVPR 2018 Submissio
    • …
    corecore