117 research outputs found

    Learning understandable classifier models.

    Get PDF
    The topic of this dissertation is the automation of the process of extracting understandable patterns and rules from data. An unprecedented amount of data is available to anyone with a computer connected to the Internet. The disciplines of Data Mining and Machine Learning have emerged over the last two decades to face this challenge. This has led to the development of many tools and methods. These tools often produce models that make very accurate predictions about previously unseen data. However, models built by the most accurate methods are usually hard to understand or interpret by humans. In consequence, they deliver only decisions, and are short of any explanations. Hence they do not directly lead to the acquisition of new knowledge. This dissertation contributes to bridging the gap between the accurate opaque models and those less accurate but more transparent for humans. This dissertation first defines the problem of learning from data. It surveys the state-of-the-art methods for supervised learning of both understandable and opaque models from data, as well as unsupervised methods that detect features present in the data. It describes popular methods of rule extraction from unintelligible models which rewrite them into an understandable form. Limitations of rule extraction are described. A novel definition of understandability which ties computational complexity and learning is provided to show that rule extraction is an NP-hard problem. Next, a discussion whether one can expect that even an accurate classifier has learned new knowledge. The survey ends with a presentation of two approaches to building of understandable classifiers. On the one hand, understandable models must be able to accurately describe relations in the data. On the other hand, often a description of the output of a system in terms of its input requires the introduction of intermediate concepts, called features. Therefore it is crucial to develop methods that describe the data with understandable features and are able to use those features to present the relation that describes the data. Novel contributions of this thesis follow the survey. Two families of rule extraction algorithms are considered. First, a method that can work with any opaque classifier is introduced. Artificial training patterns are generated in a mathematically sound way and used to train more accurate understandable models. Subsequently, two novel algorithms that require that the opaque model is a Neural Network are presented. They rely on access to the network\u27s weights and biases to induce rules encoded as Decision Diagrams. Finally, the topic of feature extraction is considered. The impact on imposing non-negativity constraints on the weights of a neural network is considered. It is proved that a three layer network with non-negative weights can shatter any given set of points and experiments are conducted to assess the accuracy and interpretability of such networks. Then, a novel path-following algorithm that finds robust sparse encodings of data is presented. In summary, this dissertation contributes to improved understandability of classifiers in several tangible and original ways. It introduces three distinct aspects of achieving this goal: infusion of additional patterns from the underlying pattern distribution into rule learners, the derivation of decision diagrams from neural networks, and achieving sparse coding with neural networks with non-negative weights

    Untenable nonstationarity: An assessment of the fitness for purpose of trend tests in hydrology

    Get PDF
    The detection and attribution of long-term patterns in hydrological time series have been important research topics for decades. A significant portion of the literature regards such patterns as ‘deterministic components’ or ‘trends’ even though the complexity of hydrological systems does not allow easy deterministic explanations and attributions. Consequently, trend estimation techniques have been developed to make and justify statements about tendencies in the historical data, which are often used to predict future events. Testing trend hypothesis on observed time series is widespread in the hydro-meteorological literature mainly due to the interest in detecting consequences of human activities on the hydrological cycle. This analysis usually relies on the application of some null hypothesis significance tests (NHSTs) for slowly-varying and/or abrupt changes, such as Mann-Kendall, Pettitt, or similar, to summary statistics of hydrological time series (e.g., annual averages, maxima, minima, etc.). However, the reliability of this application has seldom been explored in detail. This paper discusses misuse, misinterpretation, and logical flaws of NHST for trends in the analysis of hydrological data from three different points of view: historic-logical, semantic-epistemological, and practical. Based on a review of NHST rationale, and basic statistical definitions of stationarity, nonstationarity, and ergodicity, we show that even if the empirical estimation of trends in hydrological time series is always feasible from a numerical point of view, it is uninformative and does not allow the inference of nonstationarity without assuming a priori additional information on the underlying stochastic process, according to deductive reasoning. This prevents the use of trend NHST outcomes to support nonstationary frequency analysis and modeling. We also show that the correlation structures characterizing hydrological time series might easily be underestimated, further compromising the attempt to draw conclusions about trends spanning the period of records. Moreover, even though adjusting procedures accounting for correlation have been developed, some of them are insufficient or are applied only to some tests, while some others are theoretically flawed but still widely applied. In particular, using 250 unimpacted stream flow time series across the conterminous United States (CONUS), we show that the test results can dramatically change if the sequences of annual values are reproduced starting from daily stream flow records, whose larger sizes enable a more reliable assessment of the correlation structures

    Current and Future Challenges in Knowledge Representation and Reasoning

    Full text link
    Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022 a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade

    Learning action representations using kernel perceptrons

    Get PDF
    Action representation is fundamental to many aspects of cognition, including language. Theories of situated cognition suggest that the form of such representation is distinctively determined by grounding in the real world. This thesis tackles the question of how to ground action representations, and proposes an approach for learning action models in noisy, partially observable domains, using deictic representations and kernel perceptrons. Agents operating in real-world settings often require domain models to support planning and decision-making. To operate effectively in the world, an agent must be able to accurately predict when its actions will be successful, and what the effects of its actions will be. Only when a reliable action model is acquired can the agent usefully combine sequences of actions into plans, in order to achieve wider goals. However, learning the dynamics of a domain can be a challenging problem: agents’ observations may be noisy, or incomplete; actions may be non-deterministic; the world itself may be noisy; or the world may contain many objects and relations which are irrelevant. In this thesis, I first show that voted perceptrons, equipped with the DNF family of kernels, easily learn action models in STRIPS domains, even when subject to noise and partial observability. Key to the learning process is, firstly, the implicit exploration of the space of conjunctions of possible fluents (the space of potential action preconditions) enabled by the DNF kernels; secondly, the identification of objects playing similar roles in different states, enabled by a simple deictic representation; and lastly, the use of an attribute-value representation for world states. Next, I extend the model to more complex domains by generalising both the kernel and the deictic representation to a relational setting, where world states are represented as graphs. Finally, I propose a method to extract STRIPS-like rules from the learnt models. I give preliminary results for STRIPS domains and discuss how the method can be extended to more complex domains. As such, the model is both appropriate for learning data generated by robot explorations as well as suitable for use by automated planning systems. This combination is essential for the development of autonomous agents which can learn action models from their environment and use them to generate successful plans

    Proof-theoretic Semantics for Intuitionistic Multiplicative Linear Logic

    Get PDF
    This work is the first exploration of proof-theoretic semantics for a substructural logic. It focuses on the base-extension semantics (B-eS) for intuitionistic multiplicative linear logic (IMLL). The starting point is a review of Sandqvist’s B-eS for intuitionistic propositional logic (IPL), for which we propose an alternative treatment of conjunction that takes the form of the generalized elimination rule for the connective. The resulting semantics is shown to be sound and complete. This motivates our main contribution, a B-eS for IMLL , in which the definitions of the logical constants all take the form of their elimination rule and for which soundness and completeness are established

    Proceedings of the 11th Workshop on Nonmonotonic Reasoning

    Get PDF
    These are the proceedings of the 11th Nonmonotonic Reasoning Workshop. The aim of this series is to bring together active researchers in the broad area of nonmonotonic reasoning, including belief revision, reasoning about actions, planning, logic programming, argumentation, causality, probabilistic and possibilistic approaches to KR, and other related topics. As part of the program of the 11th workshop, we have assessed the status of the field and discussed issues such as: Significant recent achievements in the theory and automation of NMR; Critical short and long term goals for NMR; Emerging new research directions in NMR; Practical applications of NMR; Significance of NMR to knowledge representation and AI in general

    Knowledge compilation for online decision-making : application to the control of autonomous systems = Compilation de connaissances pour la décision en ligne : application à la conduite de systèmes autonomes

    Get PDF
    La conduite de systèmes autonomes nécessite de prendre des décisions en fonction des observations et des objectifs courants : cela implique des tâches à effectuer en ligne, avec les moyens de calcul embarqués. Cependant, il s'agit généralement de tâches combinatoires, gourmandes en temps de calcul et en espace mémoire. Réaliser ces tâches intégralement en ligne dégrade la réactivité du système ; les réaliser intégralement hors ligne, en anticipant toutes les situations possibles, nuit à son embarquabilité. Les techniques de compilation de connaissances sont susceptibles d'apporter un compromis, en déportant au maximum l'effort de calcul avant la mise en situation du système. Ces techniques consistent à traduire un problème dans un certain langage, fournissant une forme compilée de ce problème, dont la résolution est facile et la taille aussi compacte que possible. La traduction peut être très longue, mais n'est effectuée qu'une seule fois, hors ligne. Il existe de nombreux langages-cible de compilation, notamment le langage des diagrammes de décision binaires (BDDs), qui ont été utilisés avec succès dans divers domaines (model-checking, configuration, planification). L'objectif de la thèse était d'étudier l'application de la compilation de connaissances à la conduite de systèmes autonomes. Nous nous sommes intéressés à des problèmes réels de planification, qui impliquent souvent des variables continues ou à grand domaine énuméré (temps ou mémoire par exemple). Nous avons orienté notre travail vers la recherche et l'étude de langages-cible de compilation assez expressifs pour permettre de représenter de tels problèmes.Controlling autonomous systems requires to make decisions depending on current observations and objectives. This involves some tasks that must be executed online-with the embedded computational power only. However, these tasks are generally combinatory; their computation is long and requires a lot of memory space. Entirely executing them online thus compromises the system's reactivity. But entirely executing them offline, by anticipating every possible situation, can lead to a result too large to be embedded. A tradeoff can be provided by knowledge compilation techniques, which shift as much as possible of the computational effort before the system's launching. These techniques consists in a translation of a problem into some language, obtaining a compiled form of the problem, which is both easy to solve and as compact as possible. The translation step can be very long, but it is only executed once, and offline. There are numerous target compilation languages, among which the language of binary decision diagrams (BDDs), which have been successfully used in various domains of artificial intelligence, such as model-checking, configuration, or planning. The objective of the thesis was to study how knowledge compilation could be applied to the control of autonomous systems. We focused on realistic planning problems, which often involve variables with continuous domains or large enumerated domains (such as time or memory space). We oriented our work towards the search for target compilation languages expressive enough to represent such problems

    QBF Proof Complexity

    Get PDF
    Quantified Boolean Formulas (QBF) and their proof complexity are not as well understood as propositional formulas, yet remain an area of interest due to their relation to QBF solving. Proof systems for QBF provide a theoretical underpinning for the performance of these solvers. We define a novel calculus IR-calc, which enables unification of the principal existing resolution-based QBF calculi and applies to the more powerful Dependency QBF (DQBF). We completely reveal the relative power of important QBF resolution systems, settling in particular the relationship between the two different types of resolution-based QBF calculi. The most challenging part of this comparison is to exhibit hard formulas that underlie the exponential separations of the proof systems. In contrast to classical proof complexity we are currently short of lower bound techniques for QBF proof systems. To this end we exhibit a new proof technique for showing lower bounds in QBF proof systems based on strategy extraction. We also find that the classical lower bound techniques of the prover-delayer game and feasible interpolation can be lifted to a QBF setting and provide new lower bounds. We investigate more powerful proof systems such as extended resolution and Frege systems. We define and investigate new QBF proof systems that mix propositional rules with a reduction rule, we find the strategy extraction technique also works and directly lifts lower bounds from circuit complexity. Such a direct transfer from circuit to proof complexity lower bounds has often been postulated, but had not been formally established for propositional proof systems prior to this work. This leads to strong lower bounds for restricted versions of QBF Frege, in particular an exponential lower bound for QBF Frege systems operating with AC0[p] circuits. In contrast, any non-trivial lower bound for propositional AC0[p]-Frege constitutes a major open problem

    Learning-based inductive invariant synthesis

    Get PDF
    The problem of synthesizing adequate inductive invariants to prove a program correct lies at the heart of automated program verification. We investigate, herein, learning approaches to synthesize inductive invariants of sequential programs towards automatically verifying them. To this end, we identify that prior learning approaches were unduly influenced by traditional machine learning models that learned concepts from positive and negative counterexamples. We argue that these models are not robust for invariant synthesis and, consequently, introduce ICE, a robust learning paradigm for synthesizing invariants that learns using positive, negative and implication counterexamples, and show that it admits honest teachers and strongly convergent mechanisms for invariant synthesis. We develop the first learning algorithms in this model with implication counterexamples for two domains, one for learning arbitrary Boolean combinations of numerical invariants over scalar variables and one for quantified invariants of linear data-structures including arrays and dynamic lists. We implement the ICE learners and an appropriate teacher, and show that the resulting invariant synthesis is robust, practical, convergent, and efficient. In order to deductively verify shared-memory concurrent programs, we present a sequentialization result and show that synthesizing rely-guarantee annotations for them can be reduced to invariant synthesis for sequential programs. Further, for verifying asynchronous event-driven systems, we develop a new invariant synthesis technique that constructs almost-synchronous invariants over concrete system configurations. These invariants, for most systems, are finitely representable, and can be thereby constructed, including for the USB driver that ships with Microsoft Windows phone

    Integration of Logic and Probability in Terminological and Inductive Reasoning

    Get PDF
    This thesis deals with Statistical Relational Learning (SRL), a research area combining principles and ideas from three important subfields of Artificial Intelligence: machine learn- ing, knowledge representation and reasoning on uncertainty. Machine learning is the study of systems that improve their behavior over time with experience; the learning process typi- cally involves a search through various generalizations of the examples, in order to discover regularities or classification rules. A wide variety of machine learning techniques have been developed in the past fifty years, most of which used propositional logic as a (limited) represen- tation language. Recently, more expressive knowledge representations have been considered, to cope with a variable number of entities as well as the relationships that hold amongst them. These representations are mostly based on logic that, however, has limitations when reason- ing on uncertain domains. These limitations have been lifted allowing a multitude of different formalisms combining probabilistic reasoning with logics, databases or logic programming, where probability theory provides a formal basis for reasoning on uncertainty. In this thesis we consider in particular the proposals for integrating probability in Logic Programming, since the resulting probabilistic logic programming languages present very in- teresting computational properties. In Probabilistic Logic Programming, the so-called "dis- tribution semantics" has gained a wide popularity. This semantics was introduced for the PRISM language (1995) but is shared by many other languages: Independent Choice Logic, Stochastic Logic Programs, CP-logic, ProbLog and Logic Programs with Annotated Disjunc- tions (LPADs). A program in one of these languages defines a probability distribution over normal logic programs called worlds. This distribution is then extended to queries and the probability of a query is obtained by marginalizing the joint distribution of the query and the programs. The languages following the distribution semantics differ in the way they define the distribution over logic programs. The first part of this dissertation presents techniques for learning probabilistic logic pro- grams under the distribution semantics. Two problems are considered: parameter learning and structure learning, that is, the problems of inferring values for the parameters or both the structure and the parameters of the program from data. This work contributes an algorithm for parameter learning, EMBLEM, and two algorithms for structure learning (SLIPCASE and SLIPCOVER) of probabilistic logic programs (in particular LPADs). EMBLEM is based on the Expectation Maximization approach and computes the expectations directly on the Binary De- cision Diagrams that are built for inference. SLIPCASE performs a beam search in the space of LPADs while SLIPCOVER performs a beam search in the space of probabilistic clauses and a greedy search in the space of LPADs, improving SLIPCASE performance. All learning approaches have been evaluated in several relational real-world domains. The second part of the thesis concerns the field of Probabilistic Description Logics, where we consider a logical framework suitable for the Semantic Web. Description Logics (DL) are a family of formalisms for representing knowledge. Research in the field of knowledge repre- sentation and reasoning is usually focused on methods for providing high-level descriptions of the world that can be effectively used to build intelligent applications. Description Logics have been especially effective as the representation language for for- mal ontologies. Ontologies model a domain with the definition of concepts and their properties and relations. Ontologies are the structural frameworks for organizing information and are used in artificial intelligence, the Semantic Web, systems engineering, software engineering, biomedical informatics, etc. They should also allow to ask questions about the concepts and in- stances described, through inference procedures. Recently, the issue of representing uncertain information in these domains has led to probabilistic extensions of DLs. The contribution of this dissertation is twofold: (1) a new semantics for the Description Logic SHOIN(D) , based on the distribution semantics for probabilistic logic programs, which embeds probability; (2) a probabilistic reasoner for computing the probability of queries from uncertain knowledge bases following this semantics. The explanations of queries are encoded in Binary Decision Diagrams, with the same technique employed in the learning systems de- veloped for LPADs. This approach has been evaluated on a real-world probabilistic ontology
    • …
    corecore