28,706 research outputs found

    Direction of arrival estimation using robust complex Lasso

    Full text link
    The Lasso (Least Absolute Shrinkage and Selection Operator) has been a popular technique for simultaneous linear regression estimation and variable selection. In this paper, we propose a new novel approach for robust Lasso that follows the spirit of M-estimation. We define MM-Lasso estimates of regression and scale as solutions to generalized zero subgradient equations. Another unique feature of this paper is that we consider complex-valued measurements and regression parameters, which requires careful mathematical characterization of the problem. An explicit and efficient algorithm for computing the MM-Lasso solution is proposed that has comparable computational complexity as state-of-the-art algorithm for computing the Lasso solution. Usefulness of the MM-Lasso method is illustrated for direction-of-arrival (DoA) estimation with sensor arrays in a single snapshot case.Comment: Paper has appeared in the Proceedings of the 10th European Conference on Antennas and Propagation (EuCAP'2016), Davos, Switzerland, April 10-15, 201

    Multichannel sparse recovery of complex-valued signals using Huber's criterion

    Full text link
    In this paper, we generalize Huber's criterion to multichannel sparse recovery problem of complex-valued measurements where the objective is to find good recovery of jointly sparse unknown signal vectors from the given multiple measurement vectors which are different linear combinations of the same known elementary vectors. This requires careful characterization of robust complex-valued loss functions as well as Huber's criterion function for the multivariate sparse regression problem. We devise a greedy algorithm based on simultaneous normalized iterative hard thresholding (SNIHT) algorithm. Unlike the conventional SNIHT method, our algorithm, referred to as HUB-SNIHT, is robust under heavy-tailed non-Gaussian noise conditions, yet has a negligible performance loss compared to SNIHT under Gaussian noise. Usefulness of the method is illustrated in source localization application with sensor arrays.Comment: To appear in CoSeRa'15 (Pisa, Italy, June 16-19, 2015). arXiv admin note: text overlap with arXiv:1502.0244

    Non-convex Optimization for Machine Learning

    Full text link
    A vast majority of machine learning algorithms train their models and perform inference by solving optimization problems. In order to capture the learning and prediction problems accurately, structural constraints such as sparsity or low rank are frequently imposed or else the objective itself is designed to be a non-convex function. This is especially true of algorithms that operate in high-dimensional spaces or that train non-linear models such as tensor models and deep networks. The freedom to express the learning problem as a non-convex optimization problem gives immense modeling power to the algorithm designer, but often such problems are NP-hard to solve. A popular workaround to this has been to relax non-convex problems to convex ones and use traditional methods to solve the (convex) relaxed optimization problems. However this approach may be lossy and nevertheless presents significant challenges for large scale optimization. On the other hand, direct approaches to non-convex optimization have met with resounding success in several domains and remain the methods of choice for the practitioner, as they frequently outperform relaxation-based techniques - popular heuristics include projected gradient descent and alternating minimization. However, these are often poorly understood in terms of their convergence and other properties. This monograph presents a selection of recent advances that bridge a long-standing gap in our understanding of these heuristics. The monograph will lead the reader through several widely used non-convex optimization techniques, as well as applications thereof. The goal of this monograph is to both, introduce the rich literature in this area, as well as equip the reader with the tools and techniques needed to analyze these simple procedures for non-convex problems.Comment: The official publication is available from now publishers via http://dx.doi.org/10.1561/220000005

    Quality-based Multimodal Classification Using Tree-Structured Sparsity

    Full text link
    Recent studies have demonstrated advantages of information fusion based on sparsity models for multimodal classification. Among several sparsity models, tree-structured sparsity provides a flexible framework for extraction of cross-correlated information from different sources and for enforcing group sparsity at multiple granularities. However, the existing algorithm only solves an approximated version of the cost functional and the resulting solution is not necessarily sparse at group levels. This paper reformulates the tree-structured sparse model for multimodal classification task. An accelerated proximal algorithm is proposed to solve the optimization problem, which is an efficient tool for feature-level fusion among either homogeneous or heterogeneous sources of information. In addition, a (fuzzy-set-theoretic) possibilistic scheme is proposed to weight the available modalities, based on their respective reliability, in a joint optimization problem for finding the sparsity codes. This approach provides a general framework for quality-based fusion that offers added robustness to several sparsity-based multimodal classification algorithms. To demonstrate their efficacy, the proposed methods are evaluated on three different applications - multiview face recognition, multimodal face recognition, and target classification.Comment: To Appear in 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014

    Adaptive Relaxed ADMM: Convergence Theory and Practical Implementation

    Full text link
    Many modern computer vision and machine learning applications rely on solving difficult optimization problems that involve non-differentiable objective functions and constraints. The alternating direction method of multipliers (ADMM) is a widely used approach to solve such problems. Relaxed ADMM is a generalization of ADMM that often achieves better performance, but its efficiency depends strongly on algorithm parameters that must be chosen by an expert user. We propose an adaptive method that automatically tunes the key algorithm parameters to achieve optimal performance without user oversight. Inspired by recent work on adaptivity, the proposed adaptive relaxed ADMM (ARADMM) is derived by assuming a Barzilai-Borwein style linear gradient. A detailed convergence analysis of ARADMM is provided, and numerical results on several applications demonstrate fast practical convergence.Comment: CVPR 201

    Nonparametric Simultaneous Sparse Recovery: an Application to Source Localization

    Full text link
    We consider multichannel sparse recovery problem where the objective is to find good recovery of jointly sparse unknown signal vectors from the given multiple measurement vectors which are different linear combinations of the same known elementary vectors. Many popular greedy or convex algorithms perform poorly under non-Gaussian heavy-tailed noise conditions or in the face of outliers. In this paper, we propose the usage of mixed â„“p,q\ell_{p,q} norms on data fidelity (residual matrix) term and the conventional â„“0,2\ell_{0,2}-norm constraint on the signal matrix to promote row-sparsity. We devise a greedy pursuit algorithm based on simultaneous normalized iterative hard thresholding (SNIHT) algorithm. Simulation studies highlight the effectiveness of the proposed approaches to cope with different noise environments (i.i.d., row i.i.d, etc) and outliers. Usefulness of the methods are illustrated in source localization application with sensor arrays.Comment: Paper appears in Proc. European Signal Processing Conference (EUSIPCO'15), Nice, France, Aug 31 -- Sep 4, 201
    • …
    corecore